Sun Yat-Sen Management Review

  Journal Fullview

Sun Yat-Sen Management Review  2009/6

Vol. 17, No.2  p.517-554


Title
短期利率條件分配之尾部差異性檢定與風險值
Testing for the Difference in the Tails and VaR of Taiwan’s Short-Term Interest Rate
(633862887594128750.pdf 842KB)

Author
江明珠、李政峰、廖四郎、徐守德/國立中山大學財務管理研究所、國立高雄應用科技大學企業管理學系、國立政治大學金融學系、國立中山大學財務管理學系
Ming-Chu Chiang、Cheng-Feng Lee、Szu-Lang Liao、So-De Shyu/

Department of Finance, National Sun Yat-sen University Department of International Trade, Kun Shan University of Technology , Department of Business Administration, National Kaohsiung University of Applied Sciences , Department of Money and Banking, Natio


Abstract(Chinese)

利率風險的管理需充分掌握機率分配的尾部行為。為達到此目的,本文先 使用極值模型來描述台灣商業本票利率變動分配的尾部,並探討其厚尾現象; 其次,我們正式檢定分配的雙尾㈵徵是否相同,以了解雙尾極端值的發生是否 類似;再次,比較這些模型於計算利率商品風險值之實際表現;最後,考慮短 期利率結構性改變的影響,驗證實證結果的穩健性。為解釋利率變動的序列相 關與條件異質性,我們先使用 ARMA 與 GARCH 模型來過濾㈾料,再應用極 值模型,以符合極值理論的獨立性要求。實證結果顯示,台灣商業本票的利率 變動分配與常態分配比較,具㈲厚尾與不對稱現象,表示根據常態分配假設所 得之風險值會㈲低估之虞;而尾部參數檢定的結果指出,雙尾的㈵徵差異具㈲ 統計的顯著性,且㊨尾較㊧尾為厚,並㈲更強的證據支持利率變動分配的㊧尾 曾發生結構性改變,然而㊨尾並無充分的結構改變證據;回溯測試的結果指 出,結構性改變以前,㊨尾以極值模型的預測表現最㊝,㊧尾則以 GARCH 模型為最佳。結構改變以後,則以 Cond. GEV 模型為㊨尾最佳的預測模型, 而極值模型及 GARCH 在㊧尾的表現均差,均無法正確估計結構性變動後之 VaR。此㆒結果顯示,結構性改變不僅會影響利率變動分配的行為,亦會影響 模型的風險值預測能力,因此為㆒不可忽略的因素。

(633862887593660000.pdf 61KB)

KeyWord(Chinese)

風險值、極值理論、GARCH模型、Hill估計式、動差比Hill估計式


Abstract(English)

To effectively manage interest rate risk, it is crucial to estimate the tail behavior of distribution of interest rate accurately. This article investigates the tail behavior of Taiwan Commercial Paper rates by applying extreme value theory (EVT) to the tail of the distribution of interest rate changes. The formal statistical tests are conducted to test the differences between the characteristic parameters of the left and the right tails in order to have an insight into the occurrence of extremes in the tails. The structural change of interest rate changes are also considered to verify the robustness of empirical results. The interest rate changes are firstly filtered by ARMA and GARCH models to account for the serial correlation and heteroscedasticity. Then EVT are used to model the tails of the residuals and the performances of the models are evaluated accordingly. The empirical results show that distribution of interest rate changes is fat-tailed and asymmetric, indicating the normality assumption will lead to underestimation of VaR. In addition, we find that the right tail is statistically fatter than the left one. According to the results of structural change tests, the evidences of structural change in 1998 in left tails are stronger whereas those of right tails are weaker. The backtesting results show that, before structural change, EVT models are the best VaR model of right tail whereas GARCH outperforms EVT models in left tail. After structural change, Cond. GEV is the superior model for right tail, but for left tail, none is proved to be reliable models as all models overestimate VaRs. The results indicate that structural change, which is the unavoidable factor to be accounted for, will affect not only the tail behavior of distribution of interest rate changes but also VaR forecasting power of models.

(633862887593660000.pdf 61KB)

KeyWord(English)

Value-at-Risk, Extreme value theory, GARCH, Hill estimator, Moment Ratio Hill estimator


Policy and management implications
(Available only in Chinese)

本文以台灣貨幣市場中,最具指標性地位之融資性商業本票利率為研究對象,使用極值理論(Extreme value theory, EVT)來描述利率變動分配的尾部,並探討短期利率分配雙尾的特性。對這些特性的研究,將有助於了解利率極端值的行為,以利於利率商品風險值(Value at Risk, VaR)的計算。此外,台灣的短期利率市場自1980年代迄今,由於市場的開放及國際化,短期利率的行為是否在1998年左右經歷結構改變,進而影響風險值的估算,也是我們意欲探究的課題。 本文在利率風險管理方面的政策管理意涵為,首先,本文的實證結果發現,短期利率變動分配為非常態之厚尾分配,因此,理論上若根據常態分配去計算利率商品的價格,將會冒著很高的風險。實證結果也顯示,利率變動分配的右尾顯著地比左尾更肥厚,即價格變動的左尾比右尾還要厚,顯示短期利率市場訊息對價格的影響可能是不對稱的,這顯示常態分配下之風險值在掌握雙尾風險的不足。 其次,短期利率變動分配的左尾於1998年發生結構性改變,但右尾結構改變的證據較為薄弱。因此,結構改變的發生,使票券價格的上漲極端行為發生改變,但票券價格下跌的極端行為表現則無顯著改變,代表市場參與者之下檔風險程度較不受結構性變動的影響。 最後,我們透過比較各種極值理論模型的VaR預測能力,建議最適合管理台灣商業本票利率風險之VaR模型。就合適的風險值模型而言,在右尾方面以極值模型表現優於GARCH模型,左尾在結構改變前以GARCH表現最好,變動後則不論是極值模型或是GARCH模型均高估了VaR。實證結果也顯示,極值模型在預測高信賴水準(如 99%,99.5%)的風險值上,確實有不錯的能力,凸顯其在風險管理領域中應用極值理論的重要。


References