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ABSTRACT

This paper analyzes the computational requirements of enterprise mod-
eling, and presents a framework for reasoning with enterprise-wide models.
Enterprise modeling studies complex systems which are normally only par-
tially known, and focuses on studying the interactions among the components
of the system, and the underlying modeling assumptions thereof. We dis-
cuss some major design issues for the next generation of enterprise modeling
systems (EMS), that is, organizational-wide computing systems, and indicate
the direction future research could take to support enterprise-wide problem
formulation and problem solving. The focus of this paper is chiefly on inves-
tigating the question of how can we do model building in an enterprise-wide
environment, and on proposing ideas which we see as promising steps towards
accomplishing this difficult endeavor.
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1. Introduction

Enterprise modeling has recently emerged as a very active research area.
An enterprise model is a structural description of an organization, respectively
a part of an organization, in terms of key variables and essential relationships
only. Such a model takes a global view of an organization, and is typically
based on a rather coarse level of description. The focus of enterprise model-
ing is on representing and analyzing both the quantitative and the qualitative
properties of the underlying system, and thus differs from traditional man-
agement science approaches like mathematical programming and statistical
forecasting. The main challenge is how to build enterprise-wide models which
are focused on the issues we are dealing with. We need a flexible enterprise
modeling sysem which builds models as needed in response to queries posed by
the end-user. We propose a model building strategy which avoids looking at
problem in a myopic fashion, but one which also realizes that the construction
of a single monumental enterprise-wide model would be impractional.

Typical applications of enterprise modeling are the diagnosis of the per-
formance of a firm, predicting the behavior of an organization over time, test-
ing the implications of theories about organizations, and supporting strategic
business decisions. Hinkkanen et al (1993a) suggest a qualitative reasoning
approach to modeling enterprises, and present a prototype system which they
apply to qualitatively predict the financial behavior of a particular company
over time.

A framework which conceptualizes both qualitative and quantitative mod-
eling extends the quantitative modeling paradigm in traditional decision sup-
port systems (DSS). The motivation for taking a qualitative perspective has
various reasons. Firstly, for many problems there is simply not enough in-
formation available to formulate a quantitative model. We call this situation
modeling systems with incomplete knowledge or information. Secondly, al-
though in many cases information is available, it might be inexact or carry
uncertainties. This is called modeling systems with imprecise knowledge or in-
formation. Modeling partially known systems encompasses both cases, which
can also occur together. Thirdly, even if it were possible to acquire complete
and precise knowledge, the modeler is often not really interested in the details
of the system, in other words, the modeler prefers a qualitative description.
The latter case adopts a point of view which is typical for a top level man-
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agement perception of an organization, and is especially suited for addressing
strategic business issues. Fourthly, research in, for example, organizational
science and economics, pursues as one of its main goals the development of
general theories about certain classes of firms. In this context, one might be
interested in a qualitative framework that allows us to abstract knowledge
from a collection of particular organizations, which might be fairly specific,
into more general descriptions, retaining the qualitative information that rep-
resents only significant distinctions and characterizes all members of the class.
Analyzing such a generalized, qualitative model draws implications that hold
for all specific, possibly quantitative, models that are instances of this class.
In business related areas like organizational science, management, busi-
ness communication, and others, qualitative approaches are widely used in
order to develop theories (Monge 1990). However, in most cases qualitative
descriptions are presented as purely verbal formulations, that is, in an infor-
mal manner, Despite the usefulness of verbal formulations, additional more
formal methods are often desired in order to overcome certain vaguenesses in
describing complex systems. Semiformal graphical techniques like organigrams
and influence diagrams are a step in that direction, but still fall short when
it comes to reasoning about complex systems. Qualitative reasoning attempts
to provide a framework that allows us to model dynamic systems in qualita-
tive terms. These reasoners are based on a qualitative mathematics that was
mainly developed in economics (Moore et al 1993). Although, methods like
qualitative simulation (Kuipers 1986) have been successfully applied to sim-
ple problems, mostly from physics and engineering, they fail on more complex
and realistic problems like modeling an enterprise. The reason for the limited
applicability of purely qualitative reasoning methods is their weak inferential
power, that is, their intrinsic inability to derive strong, precise predictions
from weak, purely qualitative problem specifications. Hence, topics like incor-
porating quantitative information and, especially, model building have become
particularly important items on the agenda of current research in qualitative
reasoning. Davis (1987), Kuipers and Berleant (1990), Kiang et al (1993),

and Williams (1992) have extended the view on qualitative reasoning by inter-
" grating qualitative and quantitative information into one reasoning framework

which enables stronger predictions at the expense of higher information cost.
Falkenhainer and Forbus (1991), Addanki et al (1991), and Weld (1992) have
developed modeling approaches which support reasoning with multiple mod-
els in an effort to construct more accurate and task-specific models from a
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collection of descriptions encompassing general domain knowledge and model
fragments that describe certain phenomena from different perspectives and at
different levels of detail. However, existing systems are still either too weak
in their predictive strength or too restricted in their range of possible appli-
cations to serve as complete enterprise modeling systems. Other techniques
such as stochastic processes, time series analysis, or fuzzy set techniques fol-
low a non-deterministic paradigm, and are beyond the scope of this paper.
Besides those computational difficulties, current qualitative reasoning systems
offer only primitive user interfaces, for example model specification as LISP
expressions, which further limits their acceptance among practitioners.

Next, we discuss some major design issues for the next generation of enter-
prise modeling systems (EMS), that is, organization-wide computing systems,
and indicate the direction future research could take to support enterprise-wide
problem formulation and problem solving. The focus of the paper is chiefly on
investigating the question of how can we do model building, and how can we
extract the relevant parts of the model to support specific analysis of a cor-
porate issue in an enterprise-wide environment. We also propose some ideas
which we see as promising steps towards accomplishing this difficult endeavor.

Using different sets of assumptions and various kinds of knowledge, rang-
ing from general, qualitative knowledge to specific and precise numerical mod-
els, managers analyze organizational questions from different perspectives and
at different levels of detail. Given a particular task, model building is guided
by the selection of an appropriate perspective and level of detail, a modeling
decision for which little support is found in current decision support system
technology. When modeling a certain organizational phenomenon, it is crucial
to focus on the relevant aspects of the situation under investigation, that is, to
include all the relevant objects and contraints, but also to exclude irrelevant
ones and to ignore unnecessary details. For example, answering a question
like “How do customers see our company?” doesn’t require us to consider
the production process at an operational level, or to consider individual pieces
of machinery or product units. Modern management of organizations in a
complex and turbulent environment require managers to look at problems in
& non-myopic fashion which also recognizes all the significant interactions, in-
cluding cross-functional relationships. Traditional DSS systems do not support
this kind of focused attention, and require the modeler to make all the adequate
modeling decisions. Another important issue is the one of model reusability,
because many different modeling projects could benefit from using previously
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formulated models or parts thereof. This becomes even more compelling when
working in an organization-wide environment, where many questions need to
be analyzed using information originating from different sources, across func-
tional boundaries of the organization. While more recent model management
systems (MMS) do provide features for supporting model reusability and model
integration, they still require the modeler to decide which model pieces are rel-
evant for the task, and if their level of representation is appropriate to answer
the posed question. Muhanna and Pick (1992}, Krishnan et al (1991), and
Dolk and Kottemann (1993}, for example, present model control languages
which significantly increase the flexibility and productivity of the model build-
ing process by providing access to multiple models and solvers and by enabling
the user to select a collection of existing model from a model library, and to
assemble a composite model by linking several models. However, those sys-
tems merely offer a language for representing the modeler’s decision which
model components to include in the analysis, and how to integrate the differ-
ent components of the composite model. There is no explicit management of
the underlying modeling assumptions of a particular analysis, and no facility to
prevent the modeler from specifying incompatible, incoherent, inappropriate,
or inaccurate model compositions.

There are two, essentially disjoint, research efforts, one based in the ar-
tificial intelligence community and the other in the decision support systems
community, which study model building and reasoning with multiple models.
This paper draws upon both, and develops a synergistic framework for fu-
ture enterprise modeling systems. Designing an organization-wide inodeling
system which satisfies the above requirements necessitates explicit reasoning
about the model’s underlying assumption, and its range of applicability. We
propose a model building strategy which is inspired by research in the qualita-
tive reasoning field, and is particularly influenced by compositional modeling,
first presented by Falkenhainer and Forbus (1991). While current DSS re-
search emphasizes quantitative modeling, work in qualitative reasoning has
given more attention to reasoning about purely qualitative knowledge. We
see organizational-wide reasoning systems as decision tools for strategic and
operational management. Especially when exploring strategical questions, it
is essential to be able to include qualitative knowledge into the analysis. We
envision a system whose reasoning about a particular organization is based on
a library of model components representing interesting organizational phenom-
ena from different perspectives and different levels of detail. Given a query,
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such a gystem would generate a composite model that is derived from the
specific needs of the query.

Accomplishing this requires access to multiple sets of heterogeneous model
fragments which differ in several dimensions, some of which might even be mu-
tually inconsistent. We need to address the issue of model representation and
model organization, that is, we need a lahguage for expressing relationships
of different kinds, and for expressing underlying assumptions controlling their
applicability. We use simplifying assumptions as a class of assumptions to ex-
plicitly represent modeling commitments in terms of abstraction level, approx-
imation, perspective, level of detail, and granularity. Reasoning about those
assumptions should enable a system to identify a suitable collection of comm-
patible model fragments, and to compose an appropriate model for a query.
The model library should be organized as a set of model fragments encom-
passing general domain knowledge and organization-specific knowledge, and
should be structured in a way that reflects the organization’s topology. The
former type of knowledge could be obtained from research results in the orga-
nizational behavior field, which tries to formulate theories about organizations
in general, that is, to find relationships that help understanding the behavior
of wide classes of organizations. Since those relationships are supposed to hold
for any particular organization of the class they.tend to be very qualitative in
nature. Organization-specfic information, on the other hand, is derived from
historical data and experience accumulated within a particular company, and
" therefore, tends to be much more precise, and is often encoded in a quanti-
tative, management science/operations research (MS/OR) type of models like
optimization models, simulation models, and forecasting models. The task
of organizing organizational knowledge into semi-independent, reusable model
fragments is a crucial one for enabling an EMS to compose useful, problem-
specific models by integrating relevant, existing model components under a
variety of different modeling circumstances.

Selecting the model fragments to compose an appropriate model for an-
swering a given query requires modeling decisions along several dimension.
What is the best set of variables to be included in the model? What level
of detail is appropriate? Which are the relevant organizational phenomena
for studying the posed question? From what perspective should the prob-
lem be viewed? What kinds of approximations and abstractions should be
allowed? Even the most carefully organized model fragment library won’t pro-
vide enough information to find an answer to all these questions. Therefore,
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we assume that the query itself has to supply the missing pieces of information,
and has to provide clues which narrow the focus of the model composition pro-
cess, and sufficiently constrains an appropriate set of modeling assumptions. In
order to help generation parsimonious answers, and to ease model simulation,
another class of modeling assumptions called operation assumptions is intro-
duced. Operating assumptions narrow the scope of the model space search,
and delimit different ranges of behavior. For example, a question asking for the
key factors which affect the future performance of the company should contain
a hint that allows the system to infer if the question refers to short-term per-
formance, or to long-term performance. A short-term analysis could penalize
investments whose payoffs materialize only in the long run. Long-term analy-
ses usually suggests less detail or a higher level of abstraction, because of their
more strategical nature, and because uncertainties about the future increase
over time. Hence, when building a model in response to the above question,
we make an operating assumption on the planning horizon which narrows its
scope, and guides the search for adequate yet simple models.

The real-world phenomenon under study is often referred to as a scenario,
and the model representing it is then called a scenario model. The composi-
tional modeling framework requires first the building of a general-purpose do-

‘main theory that describes a variety of organizational objects, activities, and

processes, and a collection of interesting scenario descriptions. The domain
theory is represented as a set of model fragments, each describing an indepen-
dent aspect from a particular viewpoint. It contains general organizational
laws and rules as well as relationships that are very specific to a particular
company, and thus consolidates the organizational behavior way of thinking
with the management science school of thought. Given a domain theory and a
scenario description, the model formulation problem can be defined as selecting
the model relevant model fragments, and by composition generate a scenario
model which is coherent and most useful for answering a specific query about
the scenario’s behavior.

Model composition would start by analyzing the query, and then identify-

ing relevant model fragments by matching terms of the query with the objects-- -

represented in the model fragments of the domain theory while checking the
conditions that govern the applicability of the model fragments. From an ini-
tial set of relevant model fragments, the system would compose a final model,
which eliminates any inconsistencies among modeling assumptions that might
occur across some of the initially selected model fragments. The second crite-
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ria that drives model composition is the goal of finding the most useful model
for the task, where most useful refers to the property of being the simplest
possible model that is comprehensive and appropriate.

2. Reasoning with Multiple Models

This section overviews major approaches to the model building processes
which are based on reasoning with multiple models, that is, model building
methods which construct composite, problem-specific models from a collection
of predefined model fragments. Researchers in the DSS and AI communities
have, basically unaware of each other, proposed serveral frameworks which
provide partial solutions to this formidable problem. We argue that cross-
fertilizing ideas from both research fields will achieve significant progress in
answering many of the open research questions impeding the development of
complete, enterprise-wide model management systems. While the DSS and Al
paradigms diverge in their application domains, management are engineering,
respectively, they are faced with basically the same underlying model building
issues. Work in the two areas differ also in other aspects. Model manage-
ment in the DSS field can be seen as a natural extension of previous work in
management science and operations research, and has advanced mathematical
modeling from a state where modeling was an uncoordinated task, whose suc-
cess depended mainly on the technical skills and expertise of the modeler, to a
state where systems actually know about certain types of mathematical mod-
els and appropriate solvers. While restricted to mathematical programming
models, statistical forecasting model, and perhaps discrete-event simulation
models, DSS research has made considerable progress in solver integration. Al
research, on the other hand, has pretty much ignored the issue of how to in-
tegrate different solution algorithms employed in a composite model, but has
addressed other important issues which in turn have been neglected in DSS
research, the explicit representation of modeling assumptions, and the usage
and exploration of qualitative knowledge to name the two extremely important
ones. The next two sections summarize the work presented in the Al and DSS
literature.

2.1 Building Compbsite Models in Artificial Intelligence

DeKleer and Brown (1984) propose component connection modeling as
a framework which is intended as a tool for reasoning about loosely coupled,



Enterprise Modeling and Decision Support 9

dynamical physical systems. DeKleer and Brown’s framework rests on the
no-function-in-structure principle which says that we can decompose a com-
plex system into a structure of context-free components and interconnections.
A domain dependent component library would supply the modeler with a
standard set of independent building blocks from which a particular scenario
model can be built. In the physics and engineering domain such a library
would contain basic devices like pipes, tanks, valves, springs, electrical circuits
and so on. The structura) description of the basic components consist exclu-
sively of qualitative relationships which are represented as a set of confluence
equations. Model Integration is achieved by connecting component with each
other through terminal points which represent shared variables, a task which
requires explicit specifications from the modeler. Components communicate
by applying input signals to terminal points, and propagating output signals
from terminal point to connected components. The output signals produced
by a component depends not only on the input signals but also on the active
set of assumptions. The supporting context is described separately as a set
of global, class-wide assumptions that determines the function of a compo-
nent as a part of the system. The explicit representation of the underlying
assumptions determines which devices are compatible and what kind of in-
teractions are admissible. Class-wide assumptions correspond to ontological
commitments. Modeling an electrical circuit system, for example, demands
that variables are expressed in terms of voltage and current, and the behavior
of its constituent component be governed by physical laws like the Kirchoff
laws. In a business environment, one would have to consider other dimensions,
and would describe variables in terms of dollars and bushel, for example. Rea-
soning about fluid flow systems requires an explicit assumption if flows are
considered laminar or turbulent, or, in a network flow formulation one would
need an assumption if flows yield gains (e.g., interests on an financial invest-
ment) or losses (e.g., spoilage during a produce shipment). Another type of
assumption concerns the treatment of the dynamics of the system, that is,
it explicates if we are dealing with a equilibrium or non-equilibrium system.
The quasistatic approximation assumption, the standard case in component
connection modeling, states that the system is always in or near equilibrium,
that is, the system returns quickly to equilibrium after a disturbance. This
implicit assumption allows one to ignore intermediate non-equilibrium states
which simplifies the simulation process, but excludes more general modeling
situations. DeKleer and Brown do not discuss strategies of when and how to
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switch between different sets of assumption. In order to apply the component
connection approach to enterprise modeling we must develop a theory of busi-
ness ontologies with coherent laws and assumptions, a task that needs further
research.

Compositional modeling, recently proposed by Falkenhainer and Forbus
(1991), presents perhaps the most complete model building framework for rea-
soning with multiple models, We believe that developing an enterprise-wide
modeling system could significantly benefit from adopting the compositional
modeling strategy. For this reason, and because compositional modeling con-
tains several ideas which are still novel to the DSS community, we present a
somewhat more detailed introduction to this new and exciting model build-
ing approach. Despite its historical roots, which lie in the realm of modeling
systems from the engineering and physics domain, it pursues a much more ver-
satile approach to modeling complex systems in general. In our view, composi-
tional modeling presents a well suited groundwork for designing an enterprise
modeling system. Accepting the fact that system engineers draw upon a vast
body of knowledge ranging from qualitative rules of thumb to precise numer-
ical models in order to describe predict and explain the behavior of complex
systems, independent of a particular domain, compositional modeling does not
commit to a specific style of reasoning but offers provisions for several kinds
of knowledge representation and linkages to different solvers. In other words,
knowledge representation and solution methods are kept separate, and can be
configured to suit a specific problem domain, thus providing the capability of
quantitative, qualitative and hybrid methods of reasoning. The main contribu-
tion of compositional modeling, besides offering multiple styles of reasoning, is
its flexible approach to automatically compose task appropriate models from
a model base taking account of diverse aspects of problem analyses such as
selective attention, different levels of approximation and abstraction, explicit
representation of simplifying assumptions and operation assumptions, mod-
eling different perspectives of an artifact, and expressing different levels of
detail.

The main characteristics of compositional modeling can be summarized as
the capability of providing access to multiple models pertaining to a particular
problem domain, forming an appropriate model for each specific analysis, and
expressing explicit representations of underlying modeling assumptions. Given
(1) a model library that contains a collection of building blocks, called model
fragments, representing the available domain knowledge, (2) a description of
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a particular problem, called a scenario; and (3) a specific query, the composi-
tional modeling system’s main task is then to generate a scenario model which
can bhe solved in order to give a satisfactory answer to the question raised by
the query.

The idea of composing a scenario model as needed imposes a great chal-
lenge to model management. It is impossible to maintain a monolithic model
that represents all facets of a whole system. Instead, we organize our domain
knowledge as a collection of heterogeneous model fragments and assumptions
constraining their use. An important organizing principle in building a mode]
library is that the model fragments form a structural part-of hierarchy which is
used to identify related fragments. A model fragment must contain more than
just a set of relationships describing objects and their interactions, it must also
explicitly encode underlying assumptions which tell under which conditions it
is actually applicable. Model fragments should be designed as modular, semi-
independent, reusable, and possibly mutually incomsistent building blocks.
Additionally, we need to maintain sets of class-wide assumptions each describ-
ing commitments and conditions of a particular perspective of a scenario. By
matching the assumptions of the active set of class-wide assumptions with the
assumptions explicated in the model fragments it is possible to retrieve only
those model fragments for composing a scenario model that are applicable and
related to a given task. Which fragments should be considered for building
a scenario model depends on the active set of class-wide assumption. A cru-
cial presupposition of compositional modeling is that the query posed provides
enough clues to identify which objects and processes, and thereby which model
fragments, need to be considered and what the appropriate set of assumptions
could he.

A scenario model generated in response to a query has to be coherent
and most useful. The former requires a scenario niodel to be consistent with
the assumptions and principles of the underlying domain theory, the latter
refers to the tradeoff between information cost and relevance to the query in
terms of sufficiency and minimality (Balakrishnan and Whinston 1991). Suf-
ficiency means that the answer to the query is (a) not just correct but also
about the user's question and provides his/her with the sought information
(aboutness), and (b) in addition satisfactorily detailed and accurate (accu-
racy). Minimality, on the other hand, calls for a parsimonious response, and
forbids extraneous details. In general, there is no unique scenario model but
several candidate models satisfying the above criteria. An assumption based
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truth maintenance system (ATMS), cf. deKleer (1986), can be used to find
sets of suitable modeling assumptions, called modeling environment, each im-
plying a different candidate scenario model. The complete model composition
algorithm consists of the following four stages.

(1) Query Analysis:

Identify objects, quantities, processes, and relations of interest, and
thereby identify model fragments that need to be considered. Using
an ATMS, compute a collection of (partial) model environments repre-
senting suitable modeling assumptions.

(2) Object Expansion:
Include additional objects (and corresponding model fragments) implied

by the partial model environments using the part-of hierarchy that struc-
tures the model fragments in the model library.

(3) Candidate Completion:

Complete the partial model environments computed in (1) by incorpo-
rating new assumptions that evolved from object expansion.

(4) Candidate Evaluation and Selection:

Select the best candidate scenario model by applying some heuristic rules
that ensure minimality.

(5) Model Simulation:

After composing the final scenario model it needs to be transformed into
a proper input format suitable for an appropriate solver.

Another notable Al approach to reasoning with multiple models is the
graphs of models framework by Addanki et al (1991), which expresses physical
domains as graphs where the nodes represent models and the edges represent
the assumptions that have to be changed in order to switch between different
models. Finally, Weld (1992) introduces a model management system which
reasons about one dimension of modeling assumptions. Given a query it selects
through refinement techniques a model with an appropriate level of detail,
which might be qualitative or quantitative.

2.2 Model Integration in Decision Support Systems

The current stream of the DSS literature argues for an approach in which
model integration is achieved by relating existing models to each other, and
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thus creating higher level structures. Kottemann and Dolk (1993) propose
an object oriented, integrated modeling environment based on the structured
modeling language (SML), Geoffrion (1987), where an overall task such as
production and distribution planning is decomposed into several interacting
subtasks, and each subtask is modeled individually. They present a model
control language which allows the user to specify a collection of predefined
models as communicating processes. A cost accounting model, for example,
could calculate product prices as its output which would be sent as an input
to a forecasting model, which in turn would predict a demand which could be
sent to a production planning model, and so forth. Muhanna and Pick (1992)
report on a model management system called SYMMS that offers a model de-
scription and configuration language which enables the modeler to reuse and
connect predefined models. For example, a production planning model which
is formulated as a linear program could be coupled to a forecasting model
which would provide demand figures as the right hand side parameters of the
linear program. However, the matching of the shared variables, in this case the
demand variables, which establishes the model-model linkage needs to be done
explicitly by the user by writing a control module which pairs the output of
the forecasting model with an input port of the production, and thus provid-
ing the desired coupling link. Another example is Krishnan et al (1991) who
developed the system ASCEND which allows for (re)configuring models that
exhibit a common, compatible structure. For example, a production model
and a distribution model which are both formulated as transportation mod-
els with warehouses as common nodes could be merged into a transshipment
model that suggests a production schedule, shipments from production plants
to warehouses, and shipments from warehouses to customers.

While all these approaches support model reuse and model integration
they leave essential modeling decisions up to the modeler, who is responsible
for the selection of relevant model components and for checking their compati-
bility, for the identification and matching of shared variables, and for sequenc-
ing and synchronizing the model solving process. These modeling decisions

made by the user are based on a set of assumptions which is only implicitly . - -

expressed in the composite model, and there is very little support for ensur-
ing the sufficiency and the consistency of the assumptions being used. We
believe that these limitations can only be overcome by explicitly representing
the underlying modeling assumptions which are necessary to compose a model.
Bonezek et al (1981) first suggested the use of first-order predicate logic for
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stating the conditions which imply the application of certain model units, an
idea which is also used by Falkenhainer and Forbus (1991), and which we shall
employ for organizing the domain knowledge in our model base. Bhargava and
Krishnan (1991) suggest a different approach, in which they advocate the ex-
plicit representation of the assumptions underlying the reasoning process with
multiple mathematical programming formulations. They present a language
for a model management systems based on defeasible reasoning, a form of non-
monotonic reasoning, that allows tentative model formulations to be defeated
when new information becomes available.

3. Organization of the Model Knowledge Base

In this section, we discuss the organizing principles of the model knowl-
edge base underlying the compositional modeling framework. We view the
model base as a repository of organizational knowledge whose purpose is to
provide a resource of sharable and reusable models for helping to better under-
stand, explain and predict organizational phenomena in a variety of different
situations. In order to achieve the necessary depth and versatility, the model
base needs to contain knowledge of different knows which should include quan-
titative, qualitative, and hybrid forms of information.

- The main challenge of designing such a mode knowledge base is to decom-
pose the vast body of knowledge available into semi-independent fragments in a
manner that allows us to assemble new, task-specific models under a wide range
of scenarios. Merging relationships from multiple model fragments into an in-
tegrated, composite model requires not only a careful approach of grouping
relationships into independently meaningful units, but also an explicit treat-
ment of the modeling assumptions which describe when they apply.

The observation that a model consists of more than just a set of relation-
ships, because it always assumes a particular modeling context, leads us to a
definition of a model fragment where the modeling assumptions are explicitly
and separately expressed from the actual relationships and constraints. Hence,
we argue for different representation languages to represent the underlying as-
sumptions of a model component and its constituting relationships, which we
describe in the next two sections. Each model fragment would contain two
sections, one that contains the specification of modeling assumptions as pred-
icates, and the other containing the actual constraints and relationships that
apply if all predicates of the model assumption section are true. The constraint
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section, finally, would specify a set of constraints and relationships that are
imposed by the model fragment if its assumptions are validated. Before a
compositional algorithm can actually search the model base and identify task-
specific, relevant model fragments, it needs sufficient information to be able
to evaluate the predicates in the model assumption section. This extra infor-
mation needs to be derived from the query, or needs to be inferred from meta
rules which would be specified as a part of the model base. These meta fules
would rule out incoherent and inconsistent combinations of modeling assump-
tions, and would also imply additional conditions as a consequence of modeling
assumptions that have been already established.

3.1 Representation of Modeling Assumptions

We distinguish between several types of modeling assumptions. (1) Con-
ditions providing structural and topological information on the organization
considered. The entire organizational system should be organized into linked
subsystems which can consist of other systems or primitive objects (individ-
ual variables). Part-of relations can be used to state, for example, that the
manufacturing department is part of the company, and that plant X is part
of manufacturing. Is-a relations can be used to express that widget 2000 is
a new product, and that a new product is also, in a more general sense, just
a product. (2} Simplifying assumptions which shift focus to a particular per-
spective of the organization, and indicate if a cost analysis. a productivity
analysis, or if some other kind of analysis is desired. (3) Ontological assump-
tions which take a certain view on the organization, and select an appropriate
method of description. Should the organization be viewed as a collection of
employees who are working towards a common, cooperate goal? Should the
organization be described as a collection of interacting subunits such as fune-
tional departinents where the interaction might be represented as information
flows, cash flows, or material flows? (4) Granularity assumptions determine
the level of detail for a given analysis. A production scheduling analysis may
require the consideration of each worker and piece of machinery involved in the
manufacturing process of the products. A strategical marketing study might
need a more aggregated view, and suggest a study in terms of product groups
without explicitly considering any details of the manufacturing process. (5)
Approximations are mainly used to simplify a model for computational bene-
fits. Linearity assumptions, for example, abound in all modeling contexts. (6)
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Abstractions are used to reduce the complexity of phenomena. Inventory mod-
els typically assume that new batches of products arrive at the beginning of
a planning period, and are consumed at a constant, continuous rate, although
product arrivals and departures are actually discrete events. (7) Operating as-
sumptions help to focus model simulation by choosing, for example, if a static
or a dynamic analysis is appropriate, or if a qualitative, a quantitative, ot a
hybrid form of model is desired. We think that these seven different types of
modeling assumptions, which could be represented as first-order logical pred-
icates, cover most distinctions which are implicitly made when modelers for-
mulate traditional, monolithic models. As suggested by Bonczek et al (1981)
and Falkenhainer and Forbus (1991), when using first order predicate logic
to represent the assumptions underlying a particular model component, one
would specify each model component as a logical implication, where the set
of the relationships would be the consequence, and the modeling assumptions,
expressed as a conjunction of predicates, would be taken as the antecedent.

3.2 Representation of Model Constraints

We allow different representational forms to specify relationships or con-
straints, including QSIM-type qualitative éonstraints, quantitative algebraic
and differential equations, and RCR rules and constraints as a hybrid form
which can be used to integrate models that are formulated at different levels
of details. RCR models might also be useful for specializing purely qualitative
model fragments, and incorporating numerical, company-specific information
in the form of bounds in order to improve preciseness. In the following we
discuss the different kinds of relationships which we want to includé into our
framework, and suggest how we would represent them in-the model fragment.

3.2.1 Purely Qualitative Relationships

Theories in management encompass usually general statements which ap-
ply to whole classes of organizations. Hence, management theories try to dis-
cover commonalities among all organization (of a certain class) with general
validity, which can sometimes only tenuously be described as certain trends,
influences or tendencies. A widely used practice in research areas such as or-
ganization science, management, and behavioral information systems is to use
gualitative descriptions in order to formulate causal and functional relation-
ships as general propositions. The abundance of uncertainties and vaguenesses,
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which are actually very characteristic of organizational knowledge, often in-
hibit the specification of precise quantitative models. Qualitative statements
are typically based on hypothesized monotonic relationships of the form if vari-
able X is increased (or decreased) then variable Y will increase (or decrease).
For example, (a) Cooprider {1990) states the qualitative proposition “increas-
ing the level of partnership among organizational units leads to an increase in
the productivity of the entire organization”, and (b) Huber (1990) hypothesizes
that “For a highly centralized organization, use of computer-assisted commu-
nication and decision-support technologies (i.e., information technology (IT)
leads to more decentralization.”. Each of these two propositions expresses, ver-
bally, a monotonic relationship between two variables which is a very common
form in the OS/MT literature. Relationships of this kind could very well be
represented in the QSIM modeling language as M™ /M~ constraints, and stored
in an organizational knowledge base. Thus, we would specify relationship (a)
as a QSIM constraint '

(a) PRODUCTIVITY = M*(PARTNERSHIP),

and relationship (b) similarly as
(b) DECENTRALIZATION = M™(IT).

However, while relationship (a) is formulated as a generally applicable state-
ment, relationship (b) is conditioned on the assumption that we are operating
in a highly centralized organization. This means that we need a corresponding

predicate in the modeling assumptions section of the model fragment as well,
we may be done by specifying CENTRALIZED (ORGANIZATION).

3.2.2 General Qualitative Relationships

Monge (1990), and Weick (1989), for example, have observed that the
lack of appropriate conceptual and computational tools to model inexactly,
vaguely, or qualitatively specified systems has lead to the dominance of purely
qualitative, typically verbal, formulations of organizational theories. But in

order to test and verify theories more formalized methods are needed. Monge

outlines some specifications of a representation language for expressing dy-
namic theories of organizational processes. Monge’s proposal is rather a list
of requirements than a completely formalized language, but it illustrates that
qualitative-quantitative hybrids to formally describe variables and relation-
ships are key concepts for developing a successful organizational computing
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system. Monge addresses six dimensions of dynamic behavior when theorizing
about individual dynamic variables independently: continuity, magnitude, rate
of change, trend; periodicity, and duration. To model cause-effect relationships
among two or more variables, he presents a typology of five components: his-
tory of variables, lag, rate of change, magnitude of change, and permanence of
change.

When describing organizational processes, all quantities (variables) are
perceived as functions of time. Continuity, the first dimension, distinguishes
between continuous-time variables like organizational climate and discontinuous-
time variables like payments. The second dimension, magnitude, refers to the
amount of a variable across time. Rate of change specifies how fast a variable
changes over time. Trend can be either positive or negative meaning that in
the long run a variable increases or decreases. Constants and variables that
increase and decrease randomly are said to be trendless. If a variable follows
a regularly repeating pattern, periodicity denotes the amount of time that
elapses between the occurrence of repeating values. The sixth dimension, du-
ration, refers to mainly discontinuous-time variables that alternate between
zero and non-zero values, and measures the length of time a variable has a
non-zero value. Duration might be constant or change over time.

Monge proposes five types of dynamic cause-effect relationships involving
two or more variables as the basic component for theorizing about organiza-
tional pracesses. The first component is the history of related variables, that is,
their record of past values. The history might be known empirically or might
be hypothesized. The lag specifies the amount of time until a change in the
causal variable shows an effect in the outcome variable. Rate of change refers
to the rapidity of change in the causal variable and the rapidity with which
its effect occurs in the outcome variable. Magnitude specifies the amount -of
change in related variables. Finally, permanence indicates how an induced
effect continues over time, that is, if it is a permanent or a merely a tempo-
rary effect. Ba et al (1993) are currently working on an extension to the RCR
language in order to incorporate Monge’s suggestions.

Some purely qualitative relationships obtained from qualitative manage-
ment theory can actually be refined with respect to particular companies under
consideration. For example, the relationship “increasing promotional expen-
diture causes increasing sales volumes,” which would be specified as

(¢} SALES = M"(PROMOTIONAL _EXP),
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which, in this formulation, is a purely qualitative relationship which simply
says that sales will monotonically increase with higher promotional expendi-

tures.

SALES

>

PROMOTIONAL_EXP

Figure 1: Purely Qualitative Relationship

Relationship (c¢) could be specialized, if needed for better accuracy, to
mirror the company’s specific experiences and projections, and be restated
more precisely by including specific ranges of the expected increase. Using
the RCR language for representing such semi-qualitative constraints, we could
restate the above relationship as

(c1)SALE = [1b(PROMOTIONAL EXP,
uh(PROMOTIONAL_EXP)],

where 1b(PROMOTIONAL_EXP) denotes a lower bounding function, and
ub(PROMOTIONAL_EXP) denotes an upper bounding function of the qual-
itative relationship between promotional expenditure and sales. In order to

get specific bounds on relationship (c1) competent experts could then specify
" ranges for this relationship, as shown in Figures 2a and 2b. B

Using interval analysis it is possible to reconcile inconsistent range specifica-
tions by taking the union of intervals. In this case, we might get a compromise
formulation, shown in Figure 3, which would then be added to the model base

as a new {ragment.
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4.1 Specification of the Domain Theory

First of all, we need a domain theory describing the specific company
under study. Constructing an exhaustive domain theory would be, of course,
a tremendously time consuming and costly project in itself. Exploiting results
from database technology, we can organize the model knowledge base, which
contains the domain theory specification, in a somewhat analogous way. Sim-
ilar to a database schema definition, the domain theory presents a complete,
global view on the entire organization, and would be developed and managed
by a central, specialized administrator. Particular views on the organization
are defined as scenario descriptions, which correspond to database subschema
definitions. Users would work with scenario descriptions sunited for their par-
ticular task, and would issue queries with respect to a certain scenario.

For our purpose, it shall suffice to merely sketch out such a domain theory.
Reécall, that a model fragiment definition consists of two major parts: one that
contains the conditions under which the model fragment is applicable (called
the modeling assumptions section), and the other that actually encodes the
relationships of the model fragment. (called the relations section). Thus, a
model fragment becomes a candidate for a scenario model, if the conditions of
a model fragment are satisfied. The following shows parts of the domain theory
of the CORP corp'or'ation,.‘ and uses relationships proposed by Blanning (1987),
Huber (1990), and Cooprider (1990). The complete domain theory would
obviously be much more elaborate. For the sake of simplicity, we have left out
some of the details in the relationships section which would be necessary in
order to render the composite model solvable by a selected solution method
such as QSIM-or RCR. Domain model fragments are of the form

fragment <NAME> (output port)
' {description of the functionality of the model fragment}
conditions o -
precondition-specifications
relations

relationship-specifications
end ‘ _

where <NAMLE> is an expression designating an instantiation of this
model fragment, output port is a list of the variables which are computed by
the model fragment, and which can be shared with other fragments. Vari-
able names are written in upper case letters throughout the model definitions.
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The conditions section contains precondition-specifications, which define the
modeling assumptions that an instantiation of a model fragment depends on.
The consider clause is used to describe certain perspectives, such as an or-
ganizsational performance perspective, which we would specify as consider
(performance). Perspectives can be further focused, and a specification like
consider (performance (financialj) would imply a financial perspective on the
organization. Granularity assumptions enforce a certain level of detail. The
clause exist (EXPENSE), that is, total manufacturing cost (expense) needs to
be considered when reasoning about net income in the model. Other modeling
assumptions are specified in a similar way, like operating assumption about
the type of relationships (e.g., qualitative or quantitative) in the model, or the
kind of analysis (e.g. dynamic or static) the model could be used for. Lastly,
the relations section contains relationship specifications, which would be con-
straints of a particular modeling language. We only assume, that internally,
that is, within a single model fragment, the relationships are of a homoge-
neous type. Across model fragments, we permit heterogencous relationship
specifications by using several modeling languages.

Besides the definition of model fragment, a domain theory also contains
rules which constrain the use of the model fragment, and thus help to eliminate
potential model candidates. For example, it could be a reasonable assumption,
that qualitative performance studies always entail a dynamic analysis, a rule
which we have included as rule R-1 in our domain theory in a separate rules
section. Another rule, R-2, selects QSIM as the only solver for purely qualita-
tive scenario models.

CORP Domain Theory:

fragment MKT-1 (SALES) {marketing model describing qualtative relation-
ship between price and sale volume}
conditions
consider(exists (PRICE)),
consider(performance (financial}),
model-type(qual), simulation(dynamic)
relations

SALES=M-(PRICE)
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end
fragment MKT-2 (SALES)

- {marketing model describing qualitative relationship between price and
sale volume}
conditions .
consider(exists (PRICE)),
consider(performance (financial)),
model-type(quant), simulation(static)
relations
SALES=80000-44000*PRICE
end
fragment MKT-3 (S-ALES)

{marketing model describing semi-qualitative relationship between price
and sale volume}

conditions
consider(exists (PRICE)),
consider(performance (financial)),
model-‘type(qual—'lquant), simulation(dynamic)
relations ' ' |
SALES(t)=[68000,92000]-[40000,48000* PRICE(t)
end
fragment ACCT-1 (PRICE)
o {accounting model determining price}
conditions '
consider(exists (EXPENSE}),
consider(performance (financial)),
model-type(qual), simulation(dyna,inié)
relations
PRICE=MARKUP+EXPENSE /SALES,
constant(MARKUP)
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end
fragment MNF-1 (EXPENSE)

{manufacturing model determining total production cost}
conditions
consider(exists (SALES)),
consider(performance (financial)),
model-type(qual), simulation(dynamic)
relations
EXPENSE=FIX_COST+VAR_COST,
VAR_COST=UNIT_COST*SALES,
constant(UNIT_COST)
constant(FIX_COST)

end
fragment MNF-1 (EXPENSE)

{manufacturing model determining total production cost}
conditions
consider(exists (SALES)),
consider(performance (financial)),
model-type(qual), simulation(dynarmic)
relations
EXPENSE=FIX_COST+VAR.COST,
VAR.COST=UNIT_COST*SALES,
constant(UNIT_COST)
constant(FIX_COST)

end
fragment FIN-1 (NET.JNCOME)

{qualitative financial planning model to predict net income}

conditions
consider(exists(SALES)),

25
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consider(exists(PRICE)),
consider(exists(EXPENSE)),
consider(performance(financial)),
model-type(qual), simulation(dynamic)
relations
NET_INCOME=PRICE*SALES-EXPENSE

end
fragment MGT-1 (PRODUCTIVITY)

{qualitative management model explaining overall productivity}
conditions
consider(exists{ PARTNERSHIP)),
consider(performance(overall)),
model-type(qual), simulation(dynamic)
relations
PRODUCTIVITY=M*(PARTNERSHIP)

end
fragment MGT-2 (DECENTRALIZATION)

{qualitative management model describing the effect of the usage of
information technology on the company’s overall structure}

conditions
consider(exists(IT)),
centralized (organization)
consider({performance(overall)),
model-type(qual), simulation(dynamic)
relations

DECENTRALIZATION=M*(IT)

rules
R-1: consider(performance(X)) and model-type(qual)=>>simulation(dynamic).
R-2: model-type(qual)=>solver(gsim)

end
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4.2 Specification of a Scenario Description

For a given enterprise we would have multiple scenario descriptions, each
representing a specific viewpoint on the organization. A scenario description
provides us with a structural configuration of the objects constituting the spe-
cific scenario being investigated, and, in this regard, some topological informa-
tion about the CORP company. Usually, it also carries additional information
about the system’s behavior, such as initial states, and several simplifying
assumptions that are reasonable for the given scenario. Kaplan and Norton
(1992), for example, suggest a variety of perspectives, which are modeled as
interacting organizational units where, depending on the particular view, dif-
ferent activities and phenomena are emphasized. Views would include scenario
descriptions in terms of cash flows and material flows, scenarios representing
customer perspectives, innovation and learning perspectives, and numerous in-
ternal business perspectives. The particular scenario, which is depicted below,
represents a global, highly aggregated view on the organizational subunits, and
their interactions, which determine the financial performance of the organiza-

tion.

4.3 Query Analysis

Unless queries are restricted in some way, they can vary tremendously in
form and content. Without loosing task and domain independence, we should
restrict the query language to convey only basic information. Let us suppose a
user posed the query “How does an increase in price affect net income?” Con-
ceptually based on natural language processing, a query elaboration procedure
would analyze the issued query, and derive from it a set of ground expressions
which would be passed on to the model composition module of the enterprise
modeling system for evaluation. In absence of such a sophisticated query ana-
lyzer, we could simply devise a primitive query language which basically lists
a number of ground expressions which permit the system to identify objects,

quantities and relations of interest, where each of these has a referent in the

model knowledge base. Hence, let us consider the simplified query {increase
(Price), Quantity (amount-of (NetIncome))}, whose ground expressions in-
crease {Price) and Quantity (amount-of (NetIncome)) provide the input to the
model composition module.
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Net Income
Finance ' Marketing
2
Expense &
Price
Manufacturing Accounting
N
Expense 1
Unit Cost arkup
‘Department(Finance) link(Marketing, Finance, Sales)
Department{Marketing) link(Manufacturing, Finance, Expense)
Department(Manufacturing) link(Manufacturing, Accounting, Expense)
Department(Accounting) link(Marketing, Manufacturing, Sales)
cash{NetIncome) link{Marketing, Accounting, Sales)
cash(Expense) link{ Accounting, Marketing, Price) -
units(Sales) link(,Manufacturing, UnitCost)
price(Price) link(,Accounting, Markup)
price(UnitCost) link(Finance,, NetIncome)
percentage(markup)

Figure 4: A Scenario Description of the CORP Corporation

4.4 Model Composition

The query indicates that we need a scenario model which computes net
income. While the one ground expression quantity (amount-of (NetIncome))
of the query does not hint to either a qualitative or a quantitative modeling
approach, the other ground expression provides a clear clue for a qualitative
analysis. Since the increase operator indicates a desired direction of change
without further specification, it suggests a qualitative model for investigating
this effect on net income in the given scenario. Now, we could try to enumerate
all possible combinations of model fragments, and to prune out those which
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either violate some of the modeling assumptions or prove to be irrelevant or
insufficient regarding the query. However, this approach would be computa-
tionally too costly, considering the many combinations of model fragments,
which would typically occur in an enterprise-wide environment. The number
of modeling assumptions, on the other hand, tends to be much smaller, and
suggests better computational alternative by reasoning about combinations of
modeling assumptions first, and then to select and to integrate a suitable set of
model fragments. The task is to derive an appropriate modeling environment,
that is, to find a set of modeling assumptions consistent with the preconditions
of those model fragments which are going to be involved in the constitution
of the scenario model. Since we want to find a scenario model which is most
useful, that is, which is sufficient and, at the same time, coherent and parsi-
monious, we should try to compute the minimal modeling environment.

Falkenhainer and Forbus (1991) advocate the application of assumption-
based truth maintenance systems, and in particular the ATMS presented by
deKleer (1986), as a natural way to manipulate sets of modeling assumptions.
The ATMS maintains a dependency network where the nodes represent state-
ments received from the problem solver. never inspected by the ATMS, and
treated as data instead. Dependencies between nodes are represented as jus-
tifications. The justifications are also supplied by the problem solver, and
never examined by the ATMS. Assumptions are nodes which don’t depend on
any justifications, and a set of such assumptions is called an environment. A
node holds in an environment if it can be derived from the justifications and
the environment. Nodes are labeled with the set of all environment in which
the node holds, and simply called the node’s label. Concisely stated, a node
consists of triple < datum, label, justification>. Given a new datum and its
justification, the ATMS computes the label which contains all consistent and
minimal environment in which the new datum can be justified.

Problem Solver mpdeling e - ATMS
Model Composition .
Modue Domain Theory

modeling environmenl

Figure 5: Reasoning with Modeling Assumptions

Figure 5 shows an ATMS application to compositional modeling where
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the ATMS is employed to compute adequate modeling environments, which we
need for building task-specific scenario models. In our case, the problem solver
would be the model composition module which would supply the ATMS with
the modeling terms derived from the query, by taking the conjunction of the
query’s ground expression, for example, (increase (Price), Quantity (amount-
of {NetIncome))). Model terms are any terms that could principally appear in
a query. Bach model term is maintained as the datum of a node in the ATMS
dependency network. Given a specific model term, such as (increase (Price)),
(Quantity (amount-of (NetIncome))), or the conjunction (increase (Price) and
Quantity (amount-of (NetIncome))), the ATMS would return a set of minimal
modeling environments. Each environment would be a minimal conjunction of
modeling assumptions, which needs to be considered when building a model
that reasons about the provided model terms. In general, we have to expect
multiple, minimal modeling environment. Hence, each of them could give rise
to a different scenario model candidate. In the above example, in which the
problem solver supplies the ATMS with the model term (increase (Price) and
Quantity (amount-of (NetIncome))), the ATMS would return a set of minimal
model environments like

{{--}-~-;{consider (performance (financial)), consider (exist (Price)).
Consider (exist (NetIncome)), consider (exist (Sales)), consider (exist
(Expense)), simulation (dynamic), model-type (qual)}, }

on which we would build the scenario model. However, depending on the par-
ticular design of the dependency network and the organization of the modeling
assumption, it is possible, upon checking the obtained modeling environment,
that other objects have to be included in the scenario model if all relevant
interactions are to be modeled appropriately. After such object expansion and
candidate completion steps, we would finally arrive at a stage of the model
building process where we would face a collection of complete scenario model
candidates from which we would have to choose a final scenario model. Falken-
hainer and Forbus discuss some heuristics for this extremely difficult task,
which could be used for evaluating candidate models, and selecting the best or
most appropriate one. In our example, the final scenario model to determine
the change in net income after increasing price would look something like

scenario: Netlncome

constant(UNIT_COST)
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constant(FIX_COST)

constant(MARKUP)

SALES=M~ (PRICE)
PRICE=MARKUP+EXPENSE/SALES,
EXPENSE=FIX_COST+VAR_COST,
VAR_COST=UNIT_COST*SALES,
NET_INCOME=PRICE*SALES-EXPENSE

end.

This, of course, is not a completely specified model yet, one which could
be solved as it is. However, it shows the complete specification of the mode’s
constraints, the core part of the final scenario mode. To complete the model
specification, we still need to provide an initial state of the system, that is,
we need to specify that price is initially increasing, and we need to specify
the current, qualitative values of the other involved variables. While the ini-
tial state value of price would be derived from the query, we would obtain
the other values from an organizational database. Which details remain to
complete the scenario model specification depends on the solver selection. In
our example, we have used a QSIM kind of language to represent qualitative
relationships. If we chose QSIM as the solver of the scenario model, we would
already have a complete constraints specification for a QSIM model, but we
would need to include the initial state specification, and we would also need
to include appropriate quantity space definitions. All this extra information
required for completing the specification of particular scenario models could
be kept in the fragment definitions. However, conceptionally, we prefer a so-
lution where this information is maintained separately, because it is context
independent and can be reused in different settings and scenarios. Thus, we
suggest to set up a database as a part of the model knowledge base where we
store and maintain information like current value of system variables, possible

quantity space definitions, and quiddity information, that is information about

the intended interpretation of the variables. Bhargava et al (1991) suggest a
representation of quiddity information, and also discuss the, more practical yet
very difficult, problems of possible variable name violations, and the problems
of dealing with variables expressed in different dimensions and measurement

units.
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The integration of the relationships in the above example scenario model
was relatively straightforward. Because we have used only one qualitative rep-
resentation language in our illustration, and the query indicated a qualitative
scenario model, we could simply merge the relations sections of the involved
model fragment. In a situation like this, all we have to worry about is to
check the composite model for possible inconsistencies among the constraints,
and the possible removal of redundant constraints. Fortunately, both tasks
could be left to the solver, which, presumably would not be affected (much)
by redundant constraints, and which would detect inconsistent constraints by
failing to solve the model. '

The greater the diversity of the modeling languages is, which we allow for
specifying relationships, the more expressive the entire model knowledge base
becomes. The task of integrating model fragments, on the other hand, gets
more complicated as the heterogeneity of the model knowledge base increases.
Since, in our model integration approach, we are favoring the merging of model
components, like in compositional modeling, over communicating messages be-
tween model components, the issue of compatibility becomes more severe. We
need to carefully check the compatibility of different model fragments before
we actually attempt to convert and then to merge the relationships into a
new, composite model. We suggest a model. transformation mechanism based
on the qualitative abstraction principle, which was developed in Hinnanken et
al (1993b). The basic idea of qualitative abstraction is, that we can take two
{or more) models, identify the one with Ehe'higihest abstraction level, and then
abstract the other one to this higher level. To.illustrate this method, let us
suppose that we need to integrate the two models

M1: SALES = [68000,92000] -+ [40000, 48000] + PRICE, and
M2: PRICE = 1.1+ 3,340, 653/SALES.

Now, we see that model M2 is a precisely stated quantitative model, and that
model M1 is a semi-qualitative model formulation. Hence, we identify model
M1 as the one with the highest abstraction level among the participating mod-
els, and select its representation language as the target language of the com-
posite model, say model M3. In this example, we would transform model M2
into an equivalent formulation, model M2, using the semi-qualitative target
language, which, in this case, resembles the RCR language. Thus, we get

M2’ : PRICE = [1.1, 1.1] + [3340653, 3340653] /SALES
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were PRICE and SALES are now viewed as interval-valued variables. Model
integration is achieved by merging models M1 and M2’ into a new model

M3: SALES = [68000,92000] + [40000, 48000]*PRICE
PRICE = [1.1, 1.1} + [3340653, 3340653] /SALES.

The usage of interval representations as sort of a super language which can
subsume quantitative and qualitative relationships bears some resemblance to
an embedding language of the kind presented in Bhargava and Kimbrough
(1993). Obviously, this technique has its limitations, and we cannot expect
to merge any arbitrary combination of language representations, neither can
we expect to retain all information when we perform the conversion through
an abstraction mechanism. For example, it would be hard to integrate a SAS
model with a linear program formulation in GAMS. A rule base which would
determine an embedding language for a given model combination, and which
would infer incompatible combinations of language representation could be
used to prevent us from attempting to merge incompatible model fragments.
This rule base could be incorporated into the ATMS managing the modeling
assumptions, or could be kept as a separate tool in the model knowledge base.
A related issuc is the one of trying to combine a static and a dynamic
model formulation. This could be ruled out by simply using the information
that the two fragments are conditioned on different modeling assumptions,
namely, the operating assumptions simulation (static) versus simulation {dy-
namic). Attempting to reformulate dynamic models as a static one miglit be
inappropriate in most cases, but, on the other hand, generalizing a static model
into a dynamic model is often a reasonable thing to do. For example, model

M1 : SALES = [68000, 92000] -+ [40000, 48000] * PRICE,
which is a static one, could be generalized, and reformulated as
M1’ : SALES(t) = [68000, 92000] + [40000, 48000] = PRICE(t).

In absence of a better dynamic model in the model base, model M1’ could
serve as a valuable piece in a dynamic scenario model which needs to have

sales included.

5. Discussion and Conclusion

In this paper, we have outlined a novel, comprehensive framework for
future enterprise-wide modeling systems. While some parts of our framework
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are on a mainly suggestive level, it does present, to our knowledge, the first
comprehensive model building framework which addresses the important is-
sues in organizational modeling in one unifying approach. We believe that
future research in model building and model management for decision support
in organizational environments requires more attention to related model build-
ing and model reasoning research in artificial intelligence. One purpose of this
paper is to bring to bear some of the stimulating results obtained from the Al
community, and to indicate how they can be incorporated into the DSS re-
search on model building. Among the new features we have proposed we want
to highlight those two, which, we strongly feel, map out the most promis-
ing future research directions. First, the possibility of both qualitative and
quantitative model formulations, which introduces a new level of versatility to
organizational model building, and which should widen the scope of computer
supported decision tools considerably. Second, the application of a composi-
tional modeling strategy to automatically build task-specific secnario models,
which liberates users from having to specify special modules for controlling the
modeling integration process.

We conclude by mentioning several, more specific issues which need fur-
ther investigation. The success of compositional modeling depends heavily on a
clear organization of the domain theory. We still need a better understanding
of how to decompose an organizational environment into semi-independent
components in a manner which really reflects how different parts of the or-
ganization work together to accomplish the common, corporate goals. More
research needs to be done to develop comprehensive taxonomies and ontologies
which are necessary as a conceptual basis for the formulation of organizational
descriptions which, truly, can be considered as interpretable knowledge units
that can be used to synthesize new knowledge. Work in organizational be-
havior and management, such as Orton and Weick (1990} and Kaplan and
Norton (1992), could help to structure organizational knowledge more system-
atically. A realistic organizational setting would take place in a distributed
environment. Thus, one would like to extend our framework to a distributed
computing system, where the model knowledge base is managed across func-
tional organizational units and geographical locations.
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