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Abstract

In this paper, we illusirate how an artificial Neural Networks approaches linear programming
problems, without any assumption to be placed on the solution. ~ Also a link between ANN and the theory of
mathematical programming is illustrated. '

1. Introduction

Artificial Neural Networks (ANN) have been studied for more than 40 years, but
their applications to optimization problems did not cause much attention until Hopfield
presented his work in [1][2]. Since that, some efforts have been made to extend
Hopfield’s model to several relevant problems, or to improve the performance of
Hopfield’s model. Those include the work of Hopfield and Tank [3], Tank and
Hopfield [4], Kennedy and Chua [5], Cichocki et al. [6], Maa et al. [7], and Lillo et al.
[8].

Hopfield and Tank presented a dedicated ANN for solving the traveling salesman
problem. Tank and Hopfield proposed the first ANN for solving linear programming
(LP) problems. Even though the ANN was rapid,.efficient, and did produce some
useful results, the obtained solution is unreliable [9][7]. Kennedy and Chua modified
Tank and Hopfield model so that it actually converges. Their proof was however
incomplete from the optimization theory point of view. Maa et al. analyzed the models
of [5], and then established a model based on Kennedy and Chua  network. Lillo et
al. showed that the implementation evolved from the Kennedy and Chua  circuit may
not converge to the correct answer, and proposed a network using nonlinearity inherent
in the circuit implementation to ensure that the trajectory was forced to the feasible
region. The emphasis of Cichocki et al. is on the linear system of equations.

In basic, all the work mentioned above have built up analog electrical circuits that
are close-loop networks, and into which the objective function and constraints are
mapped. The idea behind the ANN is as follows [7]:

(The constraint) violations are fed back to adjust the states of the neurons of the networks. In this
way the overall energy of the network is always decreasing until it achieved a minimum. When the energy
attains its minimum the states of the neurons of the network are taken to be a minimizer of the original
problem.
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In summary, they have claimed the networks as completely stable designs with the
concept of the energy function, where the energy functions are formed by adding the
original cost functions with penalty terms regarding to the violation of constraints.

Their link to the theory of the mathematical programming however was left mostly
unexplored. In basic, techniques of the mathematical programming normally involve
an iterative process. At each iteration, a feasible direction with tending to decrease the
objective function is determined from the last feasible solution. Then a search task
along the feasible direction takes place to find a feasible point that reduces the value of
the objective function; or a one-dimensional optimization task along the feasible
direction takes place to find a feasible point that at least locally maximally reduces the
value of the objective function. The process stops either when there is no feasible
direction or when the decrement of the objective function is less than a predetermined
terminating criterion.

Here we present a discrete-time version of ANN system (called the NN_LP system)
to illustrate how an ANN approaches the LP problem, without any assumption to be
placed on the solution. Also a link between the ANN and the theory of the
mathematical programming is illustrated.

2. The NN_LP system
The following is a general form for the LP problem:
Maximize Z ¢j Xj

subject to:
n

Y agx<b alli=1,..m, ()
j=1

The given data (the a;; , b;, and c;) constitutes the parameters (input constants) of
g ij > Oi ] p p

the system. The ajj Xj < bj constraints are called functional constraints. The x;
j=!
> 0 restrictions are called non-negativity constraints.

In the previous works of ANN, there is no distinct way of handling with the
functional constraints and the nonnegativity constraints; they are considered as the same
category of constraints. In contrast, the simplex algorithm of the mathematical
programming first transforms the functional inequality constraints into equality
constraints by introducing the appropriate slack variables, then the optimal solution is
persuaded while maintaining the satisfying of the feasibility requirement.
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As same as in the simplex algorithm, the NN _LP system converts all the
functional constraints into equivalent equality constraints by introducing slack variables,
Xp+1> Xp+2s --» Xn+m» that the LP problem (I) is now become as!

Maximize Z ¢j Xj

subject to:
Xn+it 2. ajjxj=bj alli=1,..,m, 10))
XjZO allj=1, .., ntm

The NN_LP system, as shown in Figure 1, consists of two similar subsystems
which can be run on two independent processor concurrently. The one on the left box,
called the P(rimal) subsystem, is constructed directly from the problem (II). The other
on the right box, called the D(ual) subsystem is constructed from the dual problem of (I).
The network structures of the P subsystem and the D subsystem are shown in Figure 2
and Figure 3. Below, we take the P subsystem to illustrate the idea of their designs.

The bottom layer is designed for the satisfaction of the equality constraints in
problem (II). Whenever the activation value of the jth node is Xj foreveryj=1, .., n,

the activation value of the (n+i)th node Xp+i has to equal b - Z aj; x; for every i =
=1

1, ..., m. So the weights from all of the first n nodes to each of the last m nodes are

assigned simply to be the coefficients of the original variables respectively, as shown in

Figure 2.

The upper layer and the feedback mechanism are designed for the satisfaction of
the nonnegativity constraints and the goal of maximization in problem (II). The
concepts of the penalty method and the energy function are adopted here. The more
detail is explained in the following section.

3. The Penalty Term, The Energy Function, And The P Subsystem

The activation value of the kth node at the upper layer is hy for every k =1, ...,
n+m, and hy = exp(-r xi). exp(-r xi) is a monotonically decreasing function of r xj.
As the parameter r is being increased, the requirement of a small value of exp(-r xy)
tends to rendering xj be at least positive, and the tendency becomes stronger as the value
of r is increased further. Therefore, z exp(-r Xj) + i exp(-r Xp+i) 18

j=1 i=1

I Ifthere are functional equality constraints, they would be transformed into equivalent

equality constraints as x, + 3 ay'x;=b/"
j#k i
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adopted here as the penalty term regarding to the violation of nonnegativity constraints,
and r as the penalty parameter.

n
Letx=(x1, X2, .., xn)t, X =(X1; X5 s Xpps Bt [s XD oo xn+m)t, E(r, x)=- z S
. j=1

n m n n
it 7 [ z exp(-r Xj) + Z exp(-r b; + Z I ajj Xj)], and E(r, X)=- Z ¢j Xj
j=1 i=1 j=1 =
n m
+ 7 [ Z exp(-r Xj) + Z exp(-r Xp+1)]- E(r, X) is equivalent to E(r, X) since Xp+i =
j=1 i=1

n
b; - Z ajj xj, foralli=1, .., m. 7 is a weighted factor that determines the relative
=1

contribution of the penalty terms to designed function E(r, X). Although E(r, x) is
defined on the whole {x} space, E(r, X) is a defined on a convex set (2 = {X: xp+{ = bj

z ajj Xj» foralli=1, ..., m},and Q) isindependent ofr.
=1 &

The function E(r, X) is designed with the idea of the energy function. In the
concept of the energy function, the Generalized Liapunov Result stated below is usually
used to demonstrate the convergence property of the system. For a proof, the reader
should refer to [10].

Let x = x(t) be a solution of the following autonomous dynamic system:
x = f(x)
where function f is continuously differentiable in the domain of interest. A set G
is an invariant set for the dynamic system if whenever a point x on a system trajectory is
in G, the trajectory remains in G.

Generalized Liapunov Result -- Invariant Set Theorem  Suppose that

(@) Vi) eC ? is a scalar function,
(b) The set (2s = {x: V(x) <s} is bounded,
(c) V(x) <0 within (2s,
(d) S is the set of points within (Js, where V(x) = 0, and G is the largest
invariant set within S.
Then every trajectory in (s tends to G as time increases

The scalar function, V, in the above theorem is often called energy function or
potential function. In mathematical literature, it is also called a Liapunov function.
The key issue of verifying the stability of a dynamic system is sometimes to find an
associated energy function, since the existence of an energy function for a dynamic
system is often as indication of its good behavior. A way of identifying an energy
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function of the dynamic system is let V(x) = - [ f(x) dx (in other words, x = - Vx V(x)),
and then check if V(x) has the above properties (a), (b), (c), and (d).

As shown in Figure 2, via the feedback mechanism, Xjnew =x;+ 7 [Cj + 7 (r

m
hj -T Z:l ajj hp+y) ], forallj=1,..,n. Let AXj = Xjnew - Xj. Thus, AXj =
i= '
m
n loj+ v rhj- 2 ajjhgel=-7
i=1
follows the negative gradient of E(r, x), and the value of E(r, x) decreases as x is

2E(r,x) :
& Thus, the adjustment of x

being adjusted. Therefore, the value of E(r, X) decreases as x is being adjusted.
Fixed the value r, the Hessian matrix of E(r, x) is positive semidefinite throughout

the {x} space. Therefore, given a valuer,
(1) E(r, x) is a convex function defined on the {x} space;2
(2) The set where E(r, x) achieves its minimum is convex;
(3) Any relative minimum of E(r, x) is a global minimum.3

With the property of linear mapping from x to X, the following statements are also
true: (4) if there is a feasible region W of the problem (II), there is a convex set ¥ in
the X space corresponding to that feasible region; otherwise, there is no such ¥ ; and,
when the value r is given, (5) E(r, X) is a convex function defined over €2, (6) the
minimum set Iy, where E(r, X) achieves its minimum in (2, is convex, and (7) any
relative minimum of E(r, X) is a global minimum.

Thus, given a value of r, E(r, X) is an energy function of the P subsystem since it
has the properties of the energy function.

4. The Link Between NN_LP and Mathematical Programming

To illustrate the link between the NN _LP system and the theory of the
mathematical programming, the discrete-time version of the operating procedures of the
P subsystem and the D subsystem (shown in Table 1 and Table 2) are used. In the point
of view of the mathematical programming, the NN_LP system could involve an iterative
process. At each iteration, a feasible direction with tending to decrease the E(r, x)
function is determined from the last feasible solution. Then a search task along the
feasible direction takes place to find a feasible point that reduces the value of the E(r, x)
function. The process stops either when there is no feasible direction or a pre-
determined stopping criterion is satisfied. Those idea are adopted in the NN_LP system.

In addition, there are three kinds of possible results in solving an LP problem: an
optimal one, an infeasible one, or an unbounded one. The operation of the P subsystem
deals with the cases of the problem (I) having an optimal result or an infeasible result.
But it is ineffective to deal with the case of having an unbounded result via the P
subsystem. As we know, when an LP problem has an unbounded result, its
corresponding dual problem has an infeasible result; and when an LP problem has an
infeasible result, its corresponding dual problem has an unbounded or infeasible result
(i.e., no optimal result). Those idea are also adopted in the NN_LP system.

For the proof we refer the reader to Proposition 5 in [11].
3 Forthe proof we refer the reader io Theorem 1 in [12].
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To illustrate in more details, let first take the P subsystem to demonstrate the link.
As shown in Table 1, the adjusting x consecutively in the direction of negative gradient
of E(r, x) is set up at Step 5. Step 4 and Step 5 detect that if the current x hits the neigh-
borhood of a stationary point. Step 2 detects if there is a feasible solution. The
predetermined stopping criteria are set up in Step 8 (which detects if ¥ is empty) and
Step 9 (which finds out a near-optimal solution if there is one).

In fact, either of the following situations may happen in the operation of the P
subsystem: encountering with no stationary point or encountering with a stationary point.

If there is no stationary point, Ax will never be a zero vector. Then, X will be
drifted to the (positive) infinity since the value of E(r X) decreases as x is being adjusted
and the X on the lowest bound of E(r X) value is at the (positive) infinity. This
situation happens at the case of the problem (II) having an unbounded result. If the
problem (II) has a unbounded result, the corresponding ¥ is unbounded at the infinity,
and therefore the minimum set ' p of E(r X) is at the infinity. - Whenever this situation
happens, the process will take a much long time.

The D subsystem is constructed to check if the dual of the problem (I) has an
infeasible result. The arrow line depicted in Figure 1 means that whenever the D
subsystem gets an infeasible result (Step 8 in Table 2), it sends a message to inform the P
subsystem that the problem (I) must has no optimal result, and this is the only situation
in that the D subsystem will interrupt the P subsystem. From the simulation results, in
the case of the problem (II) having an unbounded result, the D subsystem responds much
more quickly than the P subsystem. Therefore, the D subsystem is included to be an
auxiliary mechanism of the P subsystem.

If a stationary point x is encountered, as shown in Table 1, the value r will be
increased whenever the criteria in Step 8 and Step 9 are not satisfied. E(r, X) alters and
the minimum set Gy drifts as the r value is increased, since they are functions of r.
Furthermore, the drifting of the encountered stationary point is bounded. In the
operation of the P subsystem, the situation of encountering with a stationary point
happens only when the corresponding W is empty or bounded. Under the requirement
of a small value of exp(-r y), the tendency of y being at least positive becomes stronger
as the value of r is increased further. Therefore, if there is a feasible region ¥, the
minimum set [ tendsto U when r tends to being larger.

According to the penalty function theorem, the true minimizer can only be
obtained when the penalty parameter is infinite. But, whether there is no feasible
solution or a near-optimal solution for the problem (II) can be claimed at a finite, large
value of r. Therefore, the goal of the P subsystem is to detect if U is empty and to find
out a near-optimal solution if there is one.

We have set up the NN_LP system to testify its performance at 1200 random LP
problem. At each LP problem, the number of the (original) variables lies between 1 and
12, the number of functional constraints is set randomly as long as it is bigger than the
number of the variables, and each coefficient has a value between -10 and 10. The
results have been checked with SAS-OR software, and they are 100% perfect.

5. Conclusion And Future Work

In this paper, we have illustrated how the ANN approaches the LP problems with
the concept of the energy function, where the energy functions are formed by adding the
original cost functions with penalty terms regarding to the violation of constraints.
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Then a link between the ANN and the theory of the mathematical programming has been
illustrated.

The future work lie in a couple of directions. Some of them are to speed up the
process and to derive a reasonable value of 7 for some application problem. Another
one is then to evaluate and compare the NN_LP system with other ANN's that solve the
same optimization problem.

References

[1] Hopfield, J. (1982). Neural Networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci., Vol. 79, pp. 2544-2558, April 1982.

[2] Hopfield, J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons, Proc. Natl. Acad. Sci., Vol. 81, pp. 3088-
3092, May 1984.

[3] Hopfield, J. & Tank, D. (1985). Neural computation of decisions in optimization
problems, Biological Cybernetics, Springer-Verlag, Vol. 52, pp. 141-152, 1985.

[4] Tank, D. & Hopfield, J. (1986). Simple "Neural" Optimization Networks: An a/d
Converter, Signal Decision Circuit, And A Linear Programming Circuit, IEEE
Transactions on Circuits and Systems, CAS-33(5): 533-541, May.

[5] Kennedy, M. & Chua, L. (1988). Neural Networks For Nonlinear Programming,
IEEE Trans. Circuits and Systems, 35(5): 554-562, May.

[6] Cichocki, A. & Unbehauen, R. (1992). Neural Networks for Solving Systems of
Linear Equations and Related Problems, JEEE Transactions on Circuits and Systems,
- I: Fundamental Theory and Applications, 39(2): 124-138, February.

[7] Maa, C. & Shanblatt, M. (1992). Linear and Quadratic Programming Neural Network
Analysis, IEEE Transactions on Neural Networks, 3(4): 580-594, July.

[8] Lillo, w., Loh, M., Hui, S., & Zak, S. (1993). On Solving constrained optimization
problems with neural networks: a penalty method approach, IEEE Transactions on
Neural Networks, vol. 4, no. 6, Nov..

[9] Kennedy, M. & Chua, L. (1987). Unifying the Tank and Hopfield Linear
Programming Circuit and the Canonical Nonlinear Programming, IEEE Trans.
Circuits and Systems, 34(2), Feb..

[10] Vidyasagar, M. (1979). Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs,
New Jersey, page 157. '

[11] Luenberger, D. (1984). Linear and Nonlinear Programming, second edition,
Addison-Wesley Publishing, Reading, Mass, page 180.

[12] Luenberger, D. (1984). Linear and Nonmlinear Programming, second edition,
Addison-Wesley Publishing, Reading, Mass, page 181.



the P subsystem the D subsystem

I

00 0 O 0 e 00

(@]

Figure | The NN_LP system
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Figure 2 The P subsystem of the NN_LP system for the LP problem (I). Notice that. although
not shown in Figure, each node hp., i = I, ..., m, is connected with every node x;. j =

L. ..., n, and the weight on the connection is - yYr1 ajj.
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Figure 3 The D subsystem of the NN_LP system for the LP problem (D). Notice that. although

not shown in Figure, each node hp,i, i = 1,

, 0, is connected with every node y;, j =

1, ..., m, and the weight on the connection is -7} &;
Table I The procedure of the P subsystem.
Step 0.1 : Set a reasonable, positive Y value.
Step 0.2 : Set a tiny, positive 7 value. and r = 1.
Step 0.3 : Set NON_NEG = 0.
Step 0.4 = Set B = MAXL
Step 0.5 : Set x} =-MAX], forall j=1.2, ... n
Step 0.6 : Set x; = 0.0, forallj =1.2, .., 0. .
Step 1:  Calculate the activation values, X_, |, X;,p0 -+ Xpym» FESPECtively:
ZaUxJ alli=1, .., m
Step 2. If X, 2 0 all j=1, ..., n+m. then NON_NEG = 1.
Step 3 : Calculatc the activation value, hy, hy, ..., h ., respectively:
h, =exp(-rx,), forallk =1, ..., n+m.
Step 4 ©  Calculate E(r, x) and VE(r, x).
If IVE(r, x)ll < 10, then go to Step 7.
Step 5: Calculate the new activation values of x|, Xy, -, X, TESPECUVEly:
xj"°w=xj+n lej+y(rh-r 7 auh"ﬂ )], forallj=1, ... n
where 7 is a suitable value sucl‘ that E(r, x™") < E(r, x).
If n < 10739, then go to Step 7.
Step 6 x" — x;forallj=1,...n. Then go to Step 1.
Step 7: E(r,x) - E™™" and x; — XY forallj=1....n
Step 8 :  If (NON_NEG = 0) and (E*"Y > E®)), then STOP and claim it is an infeasible LP
Step 9 : If (NON_NEG = 1) and ((xJ‘new - x;) < 104, forallj=1, .., n)), then STOP and claim it
has an optimal result, and print out the result.
Step 10: 2.0r— r, B - E" x{™" - x} forall j=1, ... n, then go to Step |




Table 2 The procedure of the D subsystem.

Step 0.1 : Set a tiny, positive 1 value, and r = [.

Step 0.2 : Set E* = MAXL

Step 0.3 : Set y; = 0.0, forallj=1,2, .., m

Step | :  Calculate the activation values, Y.\, Yms2s -+ Ymsns T€SPECtively:

m
Yoass = -C; + 'Z]ajiyj alli=1, .., n
i=
Step2: Ify;20 all j =1, ..., n+m, then STOP.
Step 3:  Calculate the activation value, hy, hy, ..., h
h,=exp(-ry,) all k=1, .., n+m.

m+n

Step 4:  Calculate E(r, y) = 2, h, and VE(, y).
k=1

if IVE(r, y)ll < 104, then go to Step 7.
Step 5. Calculate the new activation values of y, ¥, .... y,,, respectively:

e TESPECLIVELY:

new

n
v =y lrhy +r »Zlaji h, )] alj=1 ..m
1=
) < E(r, y).

new.

where 7 is a suitable value such that E(r, y
if n < 10-39, then go to Step 7.

Step 6:  y;™" —yforallj=1,..m Then go to Srep 1.

Step7: Ify;20 allj=1, .., n+m, then STOP;
otherwise E(r, y) — E™™".

Step 8 : If E*™Y > E*, then STOP and claim it is an infeasible LP, and send a no optimal
solution message to the P subsystem;
otherwise then 2.0t — r, E™""¥ — E’the corresponding ‘¥ is empty; if the constrained
problem (II) has an optimal result, the corresponding ¥ is bounded, then go to Step 1




