Sun Yat-sen Management Review
Vol.3, No.1, March 1995

Knapsack-Based Approaches for Scheduling
Unrelated Parallel Processors

Chang- Yung Liu
Department of Business Management
National Sun Yet-sen University
Hochi Hwang
Kaohsiang Medical College
(Received January 1995; revised March 1995; accepted April 1995) -

Abstract

Parallel processors problems are among the most difficult combinatorial problems to
solve. In this paper we study the problem of scheduling n independent jobs on m unrelated
- parallel processors with the objective of minimizing the makespan. We propose a branch-
and-bound algorithm for finding the optimal schedule. This algorithm depends on reducing
the set of m constraints to a single diophantine equation, resulting in a knapsack problem.
Computationa) experience indicates that most problems with 5 processors and 30 jobs can
be solved in just a few seconds of computer time.

Keywords : K;iapsack-, Scheduling, Unrelated Parallel Processors.
1. Introduction

This paper presents a branch-and-bound algorithm for the scheduling of a
set of n.independent jobs on m unrelated parallel processors with the objective
of minimizing makespan. The jobs are independent and each must be done by
a single processor. Splitting jobs is not allowed and it is assumed that there are
no precedence constraints. The processors are nonidentical in the sense that
there is no notion of a fast processor always requiring less time than a slow
processor, irrespective of that task being executed. Rather, the time required
for the execution of a task on a processor is a function of both the task and the
processor. An example of this might be in a distributed system where the time
requirement of a task on a processor may depend on communication costs.

In [13] this problem is shown to be NP-complete. Hence it seems unlikely
that a polynomial time-bounded algorithm, which guarantees an optimal se-
quence, exists for this problem. The integer programming formulation of this

problem is

(P0) Min Z

sty i, 0)z(,))<Z i=1,---,m
—

Z(L'(Z,_j‘):]. j:]-':"'an
i=1
x(1,j)={0,1} for all i and j,




2 Chang-Yung Liu - Hochi Hwang

where n is the number of jobs,
m is the number of processors,
_t(i,j) is the processing time of job j on processor i,
x(1,j) is an indicator variable that is 1 if processor
i performs job j and 0 otherwise,

Z is the makespan.

Clearly, the exponential-time related enumeration method is the only way
of finding the optimal schedule. It is thus worthwhile to design an efficient
exact algorithm.

In [11] a polynomial time-bounded algorithm was given to obtain a sched-
ule with the makespan arbitrarily close to the optimal. However, the complex-
ity of the algorithm is O((1/€)n®™) where ¢ is the relative error. Ibarra and Kim
[12] presented an nlog(n) time-bounded algorithm for m=2 which generates a

schedule having a makespan at most (v/5 — 1)/2 of the optimal. Lenstra et al.
[17] show that no polynomial-time heuristic for this problem has a worst-case
performance ratio of less than 3/2 unless P=NP. De and Morton [5] proposed
a new heuristic procedure for which the average behavior is within 1.3 percent
of the branch-and-bound procedure. Davis and Jaffe [4] also present a num-

ber of algorithms with behavior which is 2,/m times worse than the optimal
in the worst case. Liu and Liaw [18] propose two polynomial time bounded
algorithms with the addition of an improvement procedure which performs a
sequence of job interchanges. Their solution is very close to the optimal.

Although, various heuristic methods for scheduling unrelated parallel pro-
cessors have been proposed. None of these heuristics dominates all the others
in terms of both worst-case performance ratio and time requirements. A report
on extensive computational tests to evaluate the effectiveness of these heuris-
tics is provided [10]. Results indicate that, unless an improvement procedure
is included, the quality of the heuristic schedules is rather unsatisfactory.

There has been other work on minimizing mean tardiness on parallel
processors [9]. Pre-emptive scheduling of tasks on nonidentical processors is
studied in [16,8]. In [1] a different optimality criterion is studied. In [20] a
man-machine interactive process to swap jobs to minimize the makespan on
identical processors is proposed. Dynamic programming and knapsack algo-
rithm approaches are used to solve the identical processor case in [2,21).

In this paper we present a branch-and-bound procedure which finds ex-
act solutions to unrelated parallel processors scheduling problems. Bounding
schemes are derived which are motivated by the availability of extremely ef-
ficient computing algorithms for the zero-one Knapsack problem. Computa-
tional experiments are reported giving indications of limits on problem sizes
that can be solved and of how problem parameters influence solution difficulty.



Knapsack-Based Approaches for Scheduling Unrelated _ 3

2. The Knapsack Algorithm

The integer programming formulation {P0) indicates that there is at least
one of the m processor constraints holds as an equality. Assume it is processor

1 that is

Zt L)z = Z, then (P0) is equivalent to (P1):
(1) 2 :T—Maxg 540, )e( ) (1)
st i ;t(l,t)m(i, i+ jilt(r, Do) <T r=2-m (2
S ali, ) j=1,m (3)
)= {01} i=2m j=1m (4)

where T' = Zt (1,4)
i=1
Problem (P1) is an integer programming problem and can be solved by
a branch-and-bound algorithm. For this approach to be effective, the special

stlucture of the problem must be exploited. If there is a single constramt then
it is a knapsack problem. Current algorithms are capable of solving typlcal
knapsack problems with 60,000 variables in just a few seconds of computer time
[3]. Even when the problem has more than one constraint, the knapsack-like
structure can be exploited through the use of surrogate constraints.

Let w(2),w(3),...,w(m) be non-negative real numbers, and define

Z 1-? +’UJ()( j) i$2,'”,m; jzla"':n

and 7' = 3" w(r)T
re=2

The numbers w(2),w(3),....,w{m)} are called surrogate multipliers and the

theconstraint Y~ > #(4, j)z(s,j) < T (5)

=2 5=1

s called a surrogate constraint. Any solution which satisfies the constraints of
(P1) also satisfies (5), but not vice versa. Therefore the problem

(P2) Maxiit(i, Nali, ) (6)
st 3OS ¢, §)el i) < T (7)

=2 j=1




4 Chang-Yung Liu -~ Hochi Hwang

33(2,3)513:1,",?'1, (8)

r

w
1
[~

z(3,5)={0,1} i=2,---,m; j=1,---,n (9)

provides an upper bound on (P1) [22]. This relaxation is a knapsack
problem.

When using (P2) as a relaxation, the tightness of the bound is determined
by the surrogate multipliers. The tightest bound is obtained when the surro-
gate dual is solved, and can be shown to be no worse than the bounds obtained
by the linear programming relaxation or the lagrangian relaxation [14]. Meth-
ods for finding these multipliers often converge slowly and sometimes exhibit
instability [15]. As an approximation, the optimal lagrange multipliers, found
by subgradient optimization were used. The interested reader is referred to
the paper by Fisher [6] for further details on this procedure.

The linear programming relaxation of (P2) will be used to calculate
bounds when solving (P1). Although this will be a weaker bound than solving
(P2) itself, the effort required is negligible. Examining more nodes with much
less effort per node would likely reduce the solution time. This bound may be
tightened by adding any violated constraint of (P1) to (P2), and performing
one dual simplex pivot on the resulting two constraint problem. In the spirit
of Tomlin {24], this can be done in closed form and the penalty calculated by
means of a simple formula.

Note that the best solution to (P2) that is feasible to (P1) is the optimal

“solution to (P1). Thus, the procedure used to solve (P1) is a modification of
the branch-and-bound algorithm of Bulfin, Parker and Shetty [3]. It uses the
bounds discussed previously and when a feasible integer solution to (P2) is
found, it is checked for feasibility in (P1). If it is feasible to (P1), then rather
than fathoming the node, additional variables must be fixed and the procedure
continues. In addition, when some variables are fixed at one, all other variables
in the same multiple choice constraint can be fixed at zero. This will improve
the bouad cousiderably.

To provide an initial incumbent solution or for use by itself if the problem
is large, a heuristic is needed. There are two principal objectives that one
would like to meet in order to get a quality solution on unrelated processors
problem: (1) to make the loads on different processors as equal as possible; (2) -
to process each job on the processor on which it has a comparative efficiency.
Liu & Liaw’s heuristic procedure [18] meets both objectives. At the initial stage
the heuristic mainly emphasizes efficiency; but as the processors get colse to
capacity the emphasis is shifted toward the balance of loads. A reassignment
mechanism is added to improve the performance of the heuristic. Therefore,
Liu & Liaw’s heuristic will be used t0 calculate the initial incumbent solution
for our algorithm.

A statement of the algorithm follows,

Step 0: Apply heuristic procedure of Liu & Liaw to (P1); let Z* be the solution
value and X* the value of the variables. Initialize candidate list to
consist of (P2), and let all varjables be free.



Knapsack-Based Approaches for Scheduling Unrelated 5

Step 1: If the candidate list is empty, then Stop. The Z* and X* solve (P1).
Otherwise choose the problem on the candidate list with the best
bound; denote the problem by CP.

Step 2: Solve CPr, the linear programming relaxation of CP, using the algo-
rithm of Sinha & Zoltners [23]. Let the solution value be Zr with

variable values Xr.
Step 3: If CPr has no feasible solution or Zr < Z*, go to step 2.

" Step 4: If some Xr is not integer, go to step 6. If Xr satisfies (7) and (9), go
to step 8.

Step 5: Form a 2-constraint linear programming problem by adding the most
violated constraint (2) to CPr. A tighter bound than Zr can be ob-
tained by performing one iteration of the dual simplex algorithm [22]
on the two constraint problem. If the new bound is no bigger than Z*
go to step 1.

Step-6: Let Z’ (Z”) be the solution to CPr with the free variable having the
largest (smallest) ratio of objective to constraint coefficient fixed at 0
(1). U 2" < Z°(Z' > Z"), let x(1,j’) be the variable with the largest
(smallest) ratio.

Step 7: Separate the candidate problem into two new candidate problems. The
first consists of CP with the constraints x(i’,j’)=1 and set x(k,j’)=0,
k#4i’. The second is CP with x(i’,j")=0. These variables are no longer
free, but are fixed at the stated value. Place both new problems on
the candidate list and go tos tep 1.

Step 8: A new incumbent has been found. Replace Z* by Zr and X* by Xr.
Remove all problems from the candidate list with bounds no better
than the new Z* and go to step 1.

3. Computatinoal Experience

The previously discussed branch-and-bound algorithm has been tested on
a battery of randomly generated problems. Since no computational experience.
has been reported on this problem, the purpose of this experiment was twofold:
to gain some understanding of the computational difficulty of the problem
and to examine the performance of the algorithm on problems with various
parameters.

This algorithm was tested on problems with 10, 20, 30, 40 and 50 jobs
and 2, 5, 10 processors. The solution quality may depend on whether there is
any correlation between the rows or columns of the matrix of processing times.
To allow for possible variation in performance, the four following classes of test



6 Chang-Yung Liu - Hochi Hwang

problems were considered, each of which has a different method of generating
the processing time t(i,j) of each job j on each processor i.

Uncorrelated (U): t(i,j) is an integer from the uniform distribution [1,100].

processor correlated (P): t(i,j) is an integer from the uniform distribution
[a(i)+1,a(i)+20], where a(i) is an integer from the uniform distrubution
[0,80].

Job correlated (J): t(i,) is an integer from the uniform distribution [b(j)+1,b-
(j)+20], where b(j) is an integer from the uniform distribution [0,80].

Processor and job correlated (PJ): t(i,j) is an integer from the uniform
distribution [a(i)+b(j)+1, a(i)-++b(j)+20], where a(i) and b(j) are integers
from the uniform distribution [0,100].

For each value of m and n, five problems were generated for each of the
four problem classes.

- The algorithm was coded in FORTRAN and run on the CONVEX C3840
super computer at the National Sun Yat-sen University. Since a LIFO strategy
was used, storage requirements were negligible, and hence computational time
i$ the only criterion reported. Table 1 shows the computational time, in CPU
seconds, for each of the sixty problem sets. For each set the minimum, median,
and- maximum solution times are given. These were chosen since they will
provide direct information about the solution difficulty of typical problems
with a limited number -of sarnple runs.

Each problem was given a ten second time limit; if the optimal solution
was not found, the procedure terminated. On average, the algorithm had no
difficulty for any class of 2-processor problems with less than 30 jobs. Problem
classes (P) and (PJ) with m <5 & n < 30 or m < 10 & n < 20 can be solved
in less than 10 seconds.

Table 1 indicates that both correlations influence the computational per-
formance. Problems with correlation between processors (P) are definitely
easier to solve. The explanation of this phenomenon, might be that high
correlation between the processing times of each processor, tends to generate
priority relations between processors that drastically reduce the branches of
the tree that must be explored. However, problem class (J} tends to be harder
than those without any correlation between jobs. The explanation of this phe-
nomenon might be that a high correlation between the processing times of
each job tends to increase the similarity between processors, which will gener-
ate an enormous number of feasible schedules with a makespan very close to
the optimal and increase the number of nodes of the search tree. The param-
eter constants (1,100,20,80,etc.) influence the degree of correlation between
processors and jobs. Even though problem class (PJ) tends to be more easier
to solve than problem class (U), we can not conclude that processor correlated
factor (P) is more significant than job correlated factor (J).



Knapsack-Based Approaches for Scheduling Unrelated

4. Concluding Remarks

Unrelated parallel processor problems are among the most difficult com-
binatorial problems to solve. No direct algorithm has been developed for cal-
culating the optimal makespan or for constructing an optimal schedule. In
this paper we have presented a branch-and-bound algorithm for finding the
optimal schedule with minimum makespan in an unrelated parallel processors
problem. This algorithm is based on the reduction method in which the con-
straints of an integer programming model is reduced to a single diophantine
equation, resulting in a knapsack problem. Because there exists extremely ef-
ficient computing algorithms for the zero-one knapsack problem, the proposed

approach calculates lower bounds in only a limited time.

Branch-and-Bound Algorithm (in CPU seconds)

Table 1
Computational Time for the Knapsack-Based

2 5 10
class n Min Median Max Min Median Max  Min Median Max
10 .001 .003 .008 .010 .022 .132 .072 273 1.22
20 .007 .012 .038 .231 876 211 231 834 -
(U) 30 .012 .090 .28 3.32 6.87 933 - - -
40 110 211 - - - - - - -
50 - - - - - - - - -
10 .001 .001 .002 .003 .010 .087 .033 .083 .121
20 .003 .009 .023 .026 .049 .128 481 .912 2.02
(P) 30 .012 .062 .103 .198 .332 .980 399 - -
40 .033 112 301 1.65 4.48 7.85 - - -
50 211 438 1.07 7.44 - - - - -
10 .002 .005 020 .045 175 1.12 .250 .772 1.11
20 023 .082 217 .880 1.78 2.76 187 - -
(J) 30 327 129 745 256 6.34 - - - -
40 489 - - - - - - - -
50 - - - - - —~ - - -
10 .001 .003 .009 .009 .020 .980 .065 .123 1.09
20 .009 .014 .033 .187 .675 1.97 2.23 5.88 0.87
(PJ) 30 .010 .087 .239 144 344 572 - - —~
40 .354 987 533 598 9.05 - - - -
50 632 - - - - - - - -




8 Chang-Yung Liu + Hochi Hwang

Computational experience indicates that twenty job problems can be
solved, and that most problems with 5 processors and 30 jobs are within 10 sec-
onds of computational limits. This is somewhat surprising since these problems
have 5% feasible schedules. The results also indicate that processor correlated
probllems are easier to solve. Further extension of this research may involve
the investigation of the effect of methods of finding surrogate multipliers on
the computational efficiency.

References

1. Bruno, J., Coffman, E.G. and Sethi, R., “Scheduling Independent Tasks
to Reduce Mean Finishing Time,” Commun. ACM, 17, 1974, pp.382-387.

9. Bulfin, R.L., and Parker, R.G., “Scheduling Jobs on Two Facilities to
Minimize Makespan,” Management Science, 11, 202-213 (1980).

3. Bulfin, R.L., Parker, R.C. and Shetty, C.M., “Computational Results
with a Branch-and-Bound Algorithm for the General Knapsack Problem,”
Naval Research Logistics Quarterly 26, 1979, pp.41-46.

4. Davis, E. and Jaffe, J.M., “Algorithms for Scheduling Tasks on Unrelated
Processors,” Journal of ACM; 28, 1981. pp.721-736.

5. De, P. and Morton, T.E., “Scheduling to Minimize Makespan on Unequal
Parallel Processors,” Decision Sciences, 11, 1980, pp.586-602.

6. Fisher, M., “The Lagrangian Relaxation Method for Solving Integer Pro-
gramming Problems,” Management Science, 27, 1981, pp.1-18.

7. Geoffrion, A.M. and Marsten, R.E., “Integer Programming Algorithms:
'A Framework and State-of-Art Survey,” Management Science, 18, 1972,
PP.465-491.

8. Gonzalez, T. and Sahni, S., “Preemptive Scheduling of Uniform Processor
Systems,” Journal of ACM, 25, 1978, pp.92-101.

9. Ho, J.O. and Chang, Y.L., “Heuristics for Minimizing Mean Tardiness
for m Parallel Machines,” Naval Research Logistics Quarterly, 38, 1991,
pp-367-381.

10. Hariri, A.M.A. and Potts, C.N.,“Heuristics for Scheduling Unrelated Par-
allel Machines,” Computers and Operations Research, 18, 1991, pp.323-
331.

11. Horowitz, E. and Sahni, S., “Exact and Approximate Algorithm for Schedul-
ing Nonidentical Processors,” Journal of ACM, 23, 1976, pp-317-327.

12. Tharra, O.H. and Kim, C.E., “Heuristic Algorithms for Scheduling Inde-
pendent Tasks on Nonidentical Processors,” Journal of ACM, 24, 1977,
pp.280-289.

13. Karp, R.M., “educibility among Combinatorial Problems,” In Complexity of
Computer Computations, R.E. Miller and J.W. Thatcher, Eds., Plenum
Press, New York, 1977, pp.85-103.

14. Karwan, M.H. and Razdin, R.L.,“Some Relationships Between Lagrangian
and Surrogate Duality in Integer Programming,” Mathematical Program-
ming,17, 1979, pp.320-334. ‘

15. Karwan, M.H. and Rardin, R.L.,“Searchability of the Composite and Mul-




o —

16.

17.

18.

19.

20.

21.
22,
23.

24.

Knapsack-Based Approaches for Scheduling Unrelated 9

tiple Surrogate Dual Function,” Operations Research, 28, 1980, pp.1251—

1257.

Lawler, E.L. and Labetoulle, J., “On Preemptive Scheduling of Unrelated

Parallel Processors by Linear Programming,” Journal of ACM, 25, 1978,

pp.612-619. .

Lenstra, J.K., Shmoys, D.B. and Tardos, E., “Approximation Algorithms

for Scheduling Unrelated Parallel Machines,” Mathematical Programming,
46, 1990, pp.259-271.

Liuy, C.Y. and Liaw, C.F., “Heuristic Algorithm for Minimizing Makespan

on Nonidentical Parallel Processors,” Pan-Pacific Conference, Taipei, Tai-

wan, Proceedings, 1987, pp.859-863.

McNaughton, R., “Scheduling with Deadlines and Loss Functions,” Man

agement Science, 1, 1959, pp.1-12.

Nichols, R.A., Bulfin, R.L. and Parker, R.G., “An Interactive Procedure

for Minimizing Makespan on Parallel Processors,” International Journal of
Production Research, 16, 1978, pp.77-81.

Sahni, 8., “Algorithms for Scheduling Independent Tasks,” Journal of ACM,
23, 1976, pp.116-127.

Shapiro, J., Mathematical Programming: Structures and Algorithms, New
York, John Wiley and Sons, (1979).

Sinha, P. and Zoltners, A.,“The Multiple Choice Knapsack problem,” Op

erations Research, 27, 1979, pp.503-515.

Tomlin, J.A., “An Improved Branch and Bound Method for Integer Pro-

gramming,” Operations Research, 19, 1971, pp.1070-1075.




