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Abstract

This open-shop schedule has no restriction on the processing order of the jobs. The
problem for minimizing the total tardy cost in an m-machine nonpreemptive open-shop is
NP-hard. A network structure.based on the spanning tree is constructed in this work to
simplify the mathematical model of a nonpreemptive open-shop problem whose objective is
to minimize total tardy cost. The idle time rule developed in this work serves as the decision
criterion to test the performance. The proposed Heuristic A is compared with SPT, EDD,
SLACK, and MWSTR/EST (Minimum Weighted Slack Time Remaining rule and Early
Startmg Time rule) methods using 7,200 cases, which are constructed by different features.
Experimental results indicate that Heuristic A performs much better than the other four
methods under the total tardy cost criterion and even betier for complex problems. The
results also reveal that the tardiness factor has significant influence on Heuristic A, and the
due-date range has minor influence.

Key Words : Mathemaitical Programming, Network Model, Open-shop, Scheduling.

1. INTRODUCTION

Open-shop schedules differ from flow-shop and job-shop schedules in that
no restrictions are placed on the processing order for any job in the open-shop.
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The open-shop scheduling problem can be described as follows. Suppose a
number of jobs must be performed, each of which consists of m operations, by
using m, processors, and there is no prescribed order for any job using these
processors. In many situations, operations making up a job can be performed
in any order. For example, consider an order picking system in a physical
distribution center. Each new order from contracted stores may require to pick
products from different stock shelves. These products picking, however, may be
carried out in any sequence. In this particular example, the manager may wish
to schedule the picking to meet due dates of customers’ orders. Minimizing total
tardy cost in the nonpreemptive open-shop problem is a problem particularly
prevalent in testing and repair, even though it has not been extensively studied.

Each job is processed by one processor at a time, and each processor
executes one job at a time. Let n denote the number of jobs and p;; be the
time to process job i on processor j. Given the results of performance by which
the cost of each possible solution can be measured, finding a feasible schedule
that minimizes the corresponding total tardy cost is of primary concern. Using
the three-field notation of Graham et al.[5], minimizing tardy cost in an open-
shop with an arbitrary number of machines is denoted by O//%q;T;, where
«; is the unit cost of tardiness penalty for job i. The NP-hardness of the
minimizing maximum lateness problem in a two-machine nonpreemptive open-
shop (02// Luax) has been established by Lawler, Lenstra and Rinnooy Kan6].
Graham, Lawler, Lenstra and Rinnooy Kan have mentioned that 02/ [Liax is
a reducible case of O//XT; , and O//XT; is a special case of O//Ea;T; for oy
all equals to 1, so O//So;T; is obviously NP-hard and a heuristic approach to
([)]:itain a good solution is recommmended by the knowledge of problem complexity

2. :

Job-shop scheduling is among the most difficult combinatorial problems.
Removing the process sequencing constraints from the job-shop that yields
the seemingly simpler open-shop. Previous studies by Gonzalez and Sahni[3],
Gonzalez[4], and Adiri and Amit[1] have revealed that some NP-complete job-
shop problems become efficiently solvable by removing the ordering constraints.
When ordering constraints are relaxed, however, the number of feasible sched-
ules increases enormously. For example, there are approximately 4x10%° fea-
sible schedules for a five-job, five-processor open-shop problem compared to
approximately 2x10' feasible schedules for an equivalent job-shop problem.
Furthermore, if a job-shop problem could be solved in one second by complete
enumeration using a high speed computer, the same computer would take about
6.4 centuries to solve the open-shop problem. Obviously, the problem of finding
optimal open-shop schedule by enumeration is even more difficult than that of
the job-shop. Therefore, open-shop scheduling has a simple problem structure,
but a complex solution structure.

Minimizing total tardiness in the nonpreemptive open-shop problem is a
problem particularly prevalent in testing and repair, even though it has not
been extensively studied. Liu and Bulfin[7] developed polynomial algorithms
to minimize the total tardiness and the number of jobs causing tardiness in the
nonpreemptive open-shop with identical processing time jobs. The purpose
of this research is to evaluate the efficacy of five heuristics in minimizing the
total tardy cost in a nonpreemptive open-shop with an arbitrary number of
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processor. A network structure based on the spanning tree was constructed to
simplify the mathematical model of this NP-hard problem and an idle time rule
is developed to serve as the decision criterion to test the performance. More
specifically, the ebjectives of this research are (1) to develop a new heuristic
that exploits the problem structure, and (2) to conduct empirical evaluation
of the proposed heuristic in comparison with SPT (job priority equals process-
ing time of the imminent operation), EDD (job priority equals its due-date),
SLACK (job priority equals the time remaining before the job due-date minus
all remaining processing for the job), and the MWSTR/EST (a mixture of the
minimum time remaining before the job due-date/ the weighted tardiness rule
and early starting time rule) methods using a large number of simulated cases,
that consist of different features, such as the number of jobs, the number of
processors, tardiness factor, and the range of due date.

The rest of the paper is organized as follows: a mathematical model for
determining the total tardy cost is presented in section two to provide an ex-
plicit statement of the problem, and the new Heuristic A is proposed in section
three. Computational evaluation is described in section four, and conclusions
are given in section five.

2. AN N-JOB, M-PROCESSOR OPEN-SHOP

The orders picking system in a physical distribution center is a typical
open-shop problem. The orders from contracted stores can be treated as jobs,
the clerks can be treated as the processors, the operations of picking the orders
from a line of stock shelves by a clerk can be treated as a task. The sequence
in picking products from the lines of stock shelves by clerks can be immaterial.
Other examples of open shop scheduling include the teacher-class assignment
problem, examination scheduling, and some operations of manufacturing test-
ing and repair.

~ The open-shop problem can be stated as follows. There are n jobs (J1, Ja,
------ , Jn) which have to be processed by m processors (P, Py, ----- y Bo).
Bach job has m tasks associated with it. Fori =1, ...,nand j =1, ..... , I,
task j of job i is to be executed by P;. The execution time for task j of jobilis
given, and is denoted by p;;. We assume the execution times to be nonnegative
integers. The m tasks of a job may be processed in any order, but two of them
must, not be executed at the same time. All tasks must be execiuted without
interruption. Let task ij be the operation of job i executing on processor j. A 4-
job, 3-processor open shop can be illustrated as the disjunctive graph structure
in Figure 1. The problem in this research is to find, for each jobs, the schedule
of operation that obeys the constraints of the problem and minimizes a given
objective function the total tardy cost. Before formulating the model, some
notations are introduced as follows:

8;; = the start time of 'jdb i on processor j,

pij = the processing time of job i on processor j,
d; = the due date of job i,

T; = the tardiness of job i,
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Figure 1. Task relationships within the 4-job, 3-processor open shop

a; = the unit cost of tardiness penalty for jobi, and
H = the upper bound on makespan.

Indicator variables of an operation sequence are set as following:’

X = 1, if job i precedes job k on processor j,
%=1 0, otherwise.

1, if task j precedes task h of job i,
Yign = .
0, otherwise.

The n-job, m-processor open-shop in the total tardy cost model is to be
formulated in Model 1 as follows: - 3

[Model 1]
Minimize X7_;05T;
S.'tl
Sij+pi—di<T; 1<i<nl1gj<m (1)
Skj—sij+H(1_Xikj)2Pij 15%Sk§_n,1§j§m (2)
sij— sk + HXps >pry 1<i<k<n1<j<m 3
sin—sy+HQ1-Y)2py 1<i<nl<j<h<m 4) .

S — S+ HYin 2pn 1<i<n,1<j<h<m (5)
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$320 1<i<n,1<j<m
;>0 1<i<nl1<j<m
Xing, Yin € {0,1}  1<i<k<n,1<j<h<m

This model closely reflects the disjunctive graph structure as found in
Figure 1. Constraints (2) and (3) (also (4) and (5)) are pairwise disjoint con-
straints because exact one of the pair holds. There are mn(n+m-1) constraints,
n(m+1) linear variables, and mn(n+m-2)/2 indicator binary variables in this
model. For a small size problem, e.g., 4 jobs and 3 machines, it comes out
that the formulation has 72 constraints and 46 variables. The problem can
be solved by fixing the indicator binary variables using a branch-and-bound
method. Given a partial solution of fixed indicator variables, a lower bound
can be calculated by either relaxing the free integer variables or aggregating
the constraints to a single linear constraint. However, these bounds are ei-
ther too weak to fathom a partial solution or too expensive to be computed.
Thus, the computational results appear to be particularly discouraging for the
branch-and-bound method.

The problem can be simplified by Benders’ Partitioning. All indicator
variables are assumed to be fixed, and the dual variables of each constraint in
Model 1 are permitted to be wij, Uing, Uix;» Vijn, anduis,, respectively. Model 1
can then be rewritten as Model 2.

[Model 2]

Min Max E?=12?;1 a.,-W,;j i — d-i) +
2;;12}::”12;?.‘:1 Uik g [PkJ (1 Xak:r)] + E 12 =i+1 E;n 1 ’"':k; [Pka HszJ] +
‘2?=12_?=12hm=j+1 'vi:a’h[pu H(l — 1.7h)] + Ea_lzm 1Eh_3+1 'Uzgh[pth - HY;-J-'I]

8.t..
Em—l Wiz S 1 V%,
—wWij — Dhoity Yikj + Dhoipl ugkj + 21—:11 Uik — )3* 1 :k;
1 1
—Z i1 Vigh + Dhmita Ve + Dhot Vigh — Shoy vl SO Vi 4,
Wij 2 >0 Vi J,
Ujkir Ui 20 1<i<k<n,1<j<m
Vign,Vigp 20 1<i<n,1<jSh<m

Since H is a very large value, the following conditional statements can be set
for simplifying Model 2 v1a

if Xix; =1, then ’U',,k, 0;

if Xip; =0, then u,kj =0

fYi=1 then Vi = 0; and

if Y;Jh 0 then YVijh = 0.
Next, some parts of the objective function can be deleted because the following

equatmns are equal to zero.

R B BTy wans H(L — Xug) + T, Th i By uakJHXmJ =0 -
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D B B Vi H (1 = Yign) + B B, B0 v HY i =0
Uik * uikj'= 0 1<i<k<n,l <j<m
Vijh * Uiz = 0 1<i<n, 1<j <h<m

Therefore, Model 2 can be rewritten as Model 3:

[Model 3]

Min Max %3, 5% 0;Wis(pg; — di) +
E?:122=i+12_?=1 Ui Pij + E?=12£=i+12?=1u2kjpkj +
B D Bh s VP + D BT BN YinPin

a.t.

2?:1 Wiy S 1 i,

—Wij — Bpiy 1 Yikj + Dhoipa Uigg + i gy — E};;lluiéj
—Z 1 %ish + iy Ui + BT T00n — Tiivin <O Vi, j
¥y =0 1<i<k<nl1<ji<m
vigp vl =0 1<i<n,1<j<h<m
'wi_.,- 2 0 VZ,J
Uik Ui; 20 1<i<k<n,1<j<m
Vi, Vip 20 1<i<n,1<j<h<m

The maximum objective function ensures that a busy schedule is generated
and the minimum maximum objective function ensures that a busy schedule
with minimum tardy cost is generated. Model 3 is a nonlinear programming for-
mulation with n{m+1) linear constraints, mn(m-+n-2)/2 nonlinear constraints,
and mn(m+n-1) real variables. For a small size problem, e.g., 4 jobs and 3 pro-
cessors, Model 3 requires 16 linear constraints, 30 nonlinear constraints, and
72 real variables to be constructed. The mn(m+n-2)/2 nonlinear constraints
indicate that only one of the disjoint arcs in Figure 1 is selected. This causes
the problem to be computationally difficult. A new heuristic algorithm A is
proposed in the next section on the basis of the formulation of minimizing the
total tardy cost in an open-shop with arbitrary numbers of jobs and processors.

3. DEVELOPING A HEURISTIC ALGORITHM

Model 3 can be transformed into a network model. An example of a 3-job,

- 2-processor open-shop with minimizing the total tardy cost is shown in Figure
2. The (m x n) task nodes and n due date nodes represent the constraints, the
(m x n) directed arcs represent w;;, and the mn(m+n-2) directed arcs represent
Uikj, Ugkjs Vijh, and iz, respectively. The information on the node-arc in the
network can be stored in a binary adjacent matrix to conserve the memory
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Figure 2. The network model for 3-job, 2-processor open shop in Model 3

space for computation. The cost of each arc is the coefficient of the objective
function. The objective of Model 3 is to select the combination of arcs that
links .all of the (m x n) task nodes and n due-date nodes in the network to
minimize the total tardy cost. Figure 2 reveals that a network model can be
used to represent an n-job, m-processor 6pen-shop problem, so the properties
of a spanning tree can be used to search the local optimal of such open-shop
network by adding a dummy root node. The first level of the spanning tree
(level 0) consists of only one node termed as root, which is a dummy node.
Below level 0, for n > m, at most m different task nodes can be assigned;
otherwise, at most n different task nodes can be scheduled on the same level t.
Each task node may have 0, 1, or 2 successors. Of the two possible successors of
a task node, one must have the same job index as its predecessor and the other
one must have the same processor index as its predecessor. After constructing
a complete scheduling tree with a root node and (m x n) task nodes, n due date
nodes are attached to the last task nodes of each job. Therefore, the network
of an n-job, m-processor problem achieves a spanning tree. The Gantt chart
and the tree structure of a 3-job, 3-processor feasible schedule are displayed in
Figure 3 and Figure 4. ' -
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Figure 3. Gantt chart of a 3-job, 3-processor feasible schedule

Figure 4. Tree structure of a 3—job; 3-processor feasible schedule
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For minimizing the tardy cost of a job is to expand the scalar of the
spanning tree to cut the height of the spanning tree, so an idle time rule is
developed to make decision. This rule states that when a processor becomes
free at level t of a scheduling search tree, schedule the next task(i,j) with the
minimum idle time. The idle time between task node(i,j) and (i,h) is defined
by f;;. Task node(i,j) is the task to be selected at level t, and task node (i,h)
is the task of the same job i selected just before the node(ij). C; denotes the
finishing time of job i. The total tardy cost can be formulated as below:

T =38 0iT; =X oi{max(0, Ci— di)} =2, ci{max{0, (TP 95 + BT L) — di] } };

The value of I;; is the eritical factor of the total tardiness T, and d; is the
indicator of the urgency of the jobs. Therefore, they are both used to compute
the priorities for evaluating the alternatives of a partial scheduling tree; w;;
denotes the idle time of an unassigned task(i,j) which will be postponed to
level t. Three priorities must be computed on the basis of the idle time rule
for evaluating the alternatives of a partial scheduling tree.

The idle times among the task nodes in Figure 4 are as follows:

Level 0-1. I,f]_ = Ik2 = Ig3 =0
Level 1-2. I;3 =0, Ijy =psi — pro, 12 =0
Level 2-3. Iip.= 0, Irs =(wiz+pi3) —(wr1+0x1), g1 =(wk1 +2p1) — (g2 +0g2)
The priorities are dependent on the level of a partial scheduling search
tree and must be computed for each pair of tasks. The following variables are
defined as :
== the level of a scheduling search tree, t > 1,
pij= the executing time of job i on processor j,
d;= the due date of job i,
a;= the unit cost of tardiness penalty for job i,
wij= the idle time of an unscheduled task(i,j) which will be postponed to level t,

z;;= the slack time or tardy time of an unscheduled task(i,j) at level t, or slack time

or tardy time of a scheduled task(i,j),

Pry1i, j] = the total tardy cost of other unscheduled tasks(k,j) when the unscheduled

task(i,j) is selected at level t,

Pr2((i, 7), (k, h)] = the slack time or the tardy penalty of job k when the first sched-
uled task(i,j) and the unscheduled task(k,h) are both selected at
level t, " :

Pry3[(3,5), (k, h)] = the slack time or the tardy penalty of job k when the first sched-
uled task(i,j) is selected at level t but the unscheduled task(k,h)
is not,

e:[(%, 1), (k, h)] = the possible link between task(i,j) and task(k,h) at level t.

The value of e[(i, 5), (k, h)] is set to 1 when task(i,j) can be linked with

task(k,h) in its network; otherwise, the value is set to 0. Two tasks in an
open-shop can be linked together only when i =k or j = h.
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The functions for calculating the priorities on Heuristic A are derived as
below:

Prlfi, §] = Svrop max{0, zg; + |(wis + pig) — wrii}, when ec[(3, 5), (ki) =1

Pra2((i, 7), (B, h)] = 23+ zin+| (wig+Pig) — (Win+Pin)|, when e[, 7), (8, k)] =0

Pry3((5,5), (k, b)) = 215 + zen + |(wis + pis) — wenl, when e;{(3, 1), (k, h)] = 0

It the value of Pry2[(i,j), (k, k)] is greater than 0, then let Pr:2{(4, 1), (%, h)} =
apPr2[(i, 5), (k, ).

If the value of Pry3[(i, ), (k, k)] is greater than 0, then let Pr:3[(4, ), (k, k)] =
akPrt?)[('i,j), (ky h)]

The idle time rule is used to select the next m tasks from different jobs
to be processed at level ¢ of a partial scheduling search tree. The procedure of
the proposed Heuristic A is:

Step 1. Initially, the shop schedule is empty and all jobs are unscheduled. A
binary adjacent matrix E is used to store the information of the links
between two tasks, a matrix Z is used to store the slack time or tardy
time of each task at level t, and a matrix W is used to update the
idle time of an unscheduled task (i,j) which will be postponed to level
t.

Step 2.1. Evaluate the alternatives of the first task at level t of the partial
scheduling search tree by computing the value of Pr:lfi,j] for each
unscheduled task (i,j).

Step 2.2. Select the alternatives of the first task at level t of the partial schedul-
ing search tree. Select a task (i,j) with the minimum value of Prs1[s, 7]
and add this task to the shop schedule. Term the task “scheduled”.
Tf there is still an unscheduled task existed, then go to Step 3.1; oth-
erwise, execute Step 4 to compute the total tardy cost. If a tie exists,
the EDD (Earliest Due Date first) rule is used. The LPT (Longest
Processing Time first) rule is used to break the tie of the same due
date.

Step 3.1. Evaluate the alternatives of the second to the mth tasks at level t of
the partial scheduling search tree. Compute the values of
Pr2[(i, ), (k, b)) and Pry3((i, ), (k, h)] for cach pair of the first selected
task (i, 7) in Step 2.2 and unscheduled tasks (kh).

Step 3.2. Select the alternatives of the second to the mth tasks at level t of the
partial scheduling search tree. Select an unscheduled task (k,h) with
the maximum value of Pr3[(i, ), (k, k)] and add this task to the shop
schedule. Term the task “scheduled”. If the number of selected task
nodes at level t is equal to m (the size of processors), go to Step 2.1;
otherwise, repeat Step 3.2. If task (k,h) has a value of Prs2[(3, 5), (k, )]
which is greater than the value of Pry3[(i,5), (k, A)], then it will not

‘be selected at level t. After that another task (k,h) with the next
largest value of Pr;3[(i, 5), (k, k)] is to be chosen. If there is a tie in
the value of Pry3|(i, 4), (,h)], task (k,h) with the minimum value of
Pr:2((i, §), (k, )] is selected. Repeat this step m-1 times.

Step 4. When the unscheduled task is empty, compute the total tardy cost.
T = Zz‘zla;T,- = E?=1cr,-{maxv1(0, Z,;j)}.
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Table 1. The dﬁta of a 4-job, 3-clerk open shop in the total tardy cost model

| Job (i)
Clerk (j) 1 2 3 4
1 17 18 17 4
2 16 16 9 27
3 29 9 10 8
~ Due-date 54 63 63 40
Tardy cost 13 6 11 a7

For example, Table 1 the processing time, due-date, and tardiness unit
cost of a 4-job, 3-processors open shop. A tree schedule of the problem can be
constructed by the procedures of the proposed Heuristic A:

1. Step 1. Initialize all data.
2. Step 2.1. Evaluate the value of Pr;1[i, j] for twelve unassigned task nodes.

3. Step 2.2. The value of Pr:l[i,j] of task (4, 2) is minimum, so task (4, 2) is
selected as the first task in Level 1. It is marked as “*” in Figure
5. The start time and the finished time of task (4, 2) are shown in
Figure 5 as [0,27].

4

. Step 3.1. Evaluate the value of Pry2((4,2),(k,k)] and Pre3[(4,2),(k,h)] for
each pair of the first selected task (4, 2% and unassigned
1(:a,sk (1, 1), task (1, 3), task (2, 1), task (2, 3), task (3, 1), and task
3, 3).
5. Step 3.2. Task (1, 3) has the maximum value of Pr,3[(4,2),(k,&)], so it is
selected as the second tagk node at level 1.
- Step 3.1. Evaluate the value of Pr;2[(1,3),(k,h)] and Pr.3[(1,3),(k, k)] for
each pair of the previous selected task 21, 3) and unassigned
task (3, 1) and task (2, 1). _
7. Step 3.2. Task (2, 1) has the maximum value of Pr3[(1,3),(k, k)], so it is
selected as the third task node at Level 1. The number of task
o nodes reachs 3; so go to Step 2.1.
. Step 2.1. Evaluate the value of Pr1[i, j] for nine unassigned task nodes.
. Step 2.2. The value of Pry1[i, j] of task (4, 3) is minimum, so task (4, 3) is
' - selected as the first task in Level 2.
. As the procedure goes on, a tree structure of this example can be con-
structed as shown in Figure 5. The total tardiness penalty is 205. An optimal
solution of 157 units tardy cost was run by Super LINDQ. It took more than
58,000 iterations (about 8 minutes) to reach the optimal solution. Comparing
with the solutions produced by SPT (2,227), EDD (770), SLACK (2,810), and
MWSTR/EST (614) methods, the result of the proposed Heuristic A is the
best among the five methods. _ _
In Heuristic A, there are (n x m) “unscheduled” tasks at the beginning
of level 1, so mn{m+n-2) calculations and comparisons are required to select

(=2}

w 0o
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[6x9=54]

Total tardy cost = 1044-544-04-47 = 205
Figure 5. Tree structure of a 4-job, 3-clerk schedule in the total
tardy cost model

the minimum value of Pr1[i, ] in Step 2.1 and Step 2.2 for assigning the first
selected task (i,j) at level 1. Since there are (n-1)(m-1) “unassigned” tasks
that can be scheduled with the first selected task (i,j) at level 1, (m-1)(mn-n-
m-+1) calculations and comparisons are required to select the maximum value
of Pr3|(s,4), (k, k)] in Step 3.1 and Step 3.2 for assigning m-1 task nodes (k;h)
at level 1. Because the numbers of unscheduled task node decrease from nm
to 0 by m at each level, the procedure requires n{[mn(m+n-2)] + [(m-1)(mn-
n-m+1)]} calculations and comparisons, and it works out that the complexity
for Heuristic A is O(n®m).

4. COMPUTATIONAL RESULTS

4.1 Design of the Test Data
4.1.1 Shop Layout
The shop layout defines the set of clerks in the open-shop. Four scenarios

are.:




134 REH

(1). two clerks shop,

(2). three clerks shop,
(3). four clerks shop, and
(4). five clerks shop.

4.1.2 Job Operation Times

All the data, processing times and due-dates, are integers, and all the
jobs arrive simultaneously at time 0. The operation time of job i on clerk j,
DPij, 15 distributed uniformly within the range [1,30], i.e., pi; ~U(1,30). The
number of jobs in each set of tests, n, is 5, 10, 20, 30, 40, and 50. The tardiness
costs/per time unit (o;) is distributed uniformly within the range [1,60], i.e.,

Qg ™~ U(1,60)
4.1.3 Job Due Date

Concerning the tardiness costs in deterministic problems, Srinivasan [9]
and Ow [8] have found that it is important to control two main factors, i.e.,
the tardiness factor of a set of jobs and the due date range of the jobs. The
tardiness factor, ; is the average number of jobs that would be late if jobs
were randomly scheduled. The due date range, R, refers to the dispersion of
the due dates of the jobs drawn up.

In the following computational study, these two factors were also con-
trolled to determine if they would influence the performance of the procedures.
In the open-shop, however, controlling the tardiness factor is more difficult be-
cause of the forced idle time and the immaterial orders in the schedules. Nev-
ertheless, the mean due date was determined by d = 1 — 7[(n—1)]p, +Z2.54],
where p; is the mean operation processing time at clerk j and P, is the max-
imum value of $; . The actual tardiness factor is consistently higher than
the 7 value, buf it is allowed to control the tardiness factor for a set of
jobs in the open-shop. The due date is also uniformly distributed within
[d(1 = R/2),d(1+ R/2)].

The 7 values varied from 0.0 to 0.8 with 0.2 units increments. R was set
at 0.6, 1.0, and 1.6, given 30%, 50%, and 80% respectively. Twenty cases of
each layout with various numbers of jobs were generated in each of the above 15
combinations. Summarizing the above experimental design, 7,200 cases were
tested. The proposed heuristic algorithm is compared with SPT (job priority
equals processing time of the imminent operation), EDD (job priority equals
its due-date), SLACK (job priority equals the time remaining before the job
due-date minus all remaining processing for the job), and the MWSTR/EST (a
mixture of the minimum time remaining before the job due-date / the weighted
tardiness rule and early starting time rule) methods.

4.2 Summary of the Results - :

The mean values (p,) in Table 2 show that the proposed Heuristic A
is the best among these five methods. Furthermore, MWSTR/EST is the
second, EDD is the third, SPT is the fourth, and SLACK is the worst. Table
3 shows that 92 percent of the 7,200 test cases having the first ranking under
Heuristic A. The results indicate the effectiveness of the proposed Heuristic
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A. The average performance and the best performance of the five methods
under 15 combinations of different tardiness factor and due-date ranges are
also summarized in Figure 6 and Figure 7. The average trends of five methods
under five different tardiness factors in Figure 6 show that the performance of
the proposed Heuristic A is very stable. The trend of the first ranking among
five methods under five different tardiness factors in Figure 7 shows that the
performance of the proposed Heuristic A is varying, the lowest performance is
86% at 7= 0.2. The percentage of the first ranking decreases from 96% to 86%
when the tardiness factor increases from 0.0 to 0.2, it goes up from 86% to 95%
when 7 increases from 0.2 to 0.6, then it drops down to 94% when 7 increases
from 0.6 to 0.8. The performance of Heuristic A under 15 combinations is
shown in Table 4. The trend of the first ranking among three due-date ranges,
30%, 50%, and 80%, under five different tardiness factors in Figure 8 shows
that the performance of Heuristic A under these three due-date ranges has the
same pattern. But their lowest performance points have small variance. The
30% case is 81% at T = 0.2., the 50% case is 89% at 7 = 0.4, and the 80% case
is 82% at 7 = 0.4. The fact reveals that the tardiness factor has significant
influence on Heuristic A, and the influence of due-date ranges is minor.

Table 2. The average performance of five methods under 15 combinations

T R SPT | EDD | SLACK | MWSTR | Heuristic A
0.6 2.0 1.1 1.3 1.2 1.0
0.0 1.0 2.1 1.1 1.3 1.1 1.0
1.6 2.7 1.4 1.7 14 1.1
average 2.3 1.2 14 1.2 1.0
0.6 4.1 2.5 3.8 C2.T 1.3
0.2 1.0 3.2 1.7 2.4 1.8 1.1
1.6 3.5 1.9 2.4 1.8 1.2
average 3.6 2.0 2.8 2.1 1.2
0.6 3.5 3.2 4.5 2.7 1.1
0.4 1.0 41 2.9 4,2 2.7 1.1
1.6 4.4 2.6 3.8 2.7 1.3
average | . 4.0 2.9 4.2 2.7 1.2
0.6 3.3 3.4 4.8 2.4 1.1
0.6 1.0 3.5 34 4.6 2.4 1.1
1.6 3.8 3.3 44 2.4 1.0
average 3.5 34 4.6 24 1.1
0.6 3.2 3.6 5.0 2.2 1.1
0.8 1.0 3.3 3.5 4.9 2.2 1.1
1.6 34 3.5 4.9 2.2 1.1
average 3.3 3.5 49 2.2 1.1
average 3.3 2.6 3.6 2.1 1.1
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Table 3. The best performance of five methods under 15 combinations

| (Unit =%)

T R SPT { EDD SLACK | MWSTR | Heuristic A
0.6 23 93 - 82 91 100
0.0 1.0 10 91 85 93 99
1.8 6 - 75 67 78 91
average| 13 86 78 87 96
0.6 2 17 5 13 81
0.2 1.0 3 60 40 53 92
1.6 -2 51 38 55 85
average 2 42 28 40 "~ 86
0.6 4 1 - 0 2 93
0.4 1.0 3 3 0 5 89
1.6 0 10 3 10 82
average 2 4 1 5 88
0.6 3 1 0 3 93
0.6 1.0 4 0 0 2 94
1.6 1 0 0 2 97
average 3 0 0 2 95
0.6 2 1 0 5 93
08 | 1.0 2 0 0 5 93
1.6 2 0 0 4 95
average 2 0 0 4 94
average 4 22 18 24 92

Heuristic A

(%) 1

Heuristic A

[ %] 0.4 06° 08

" factor tardiness Eactor

Figure 6. The average trend and the trend of 1st ranking order of
five methods under 5 tardiness factors
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Table 4. The performance of the proposed Heuristic A under
15 combinations

T R 1st 2nd | 3rd | 4th | 5th Py
0.6 100 0 0 0 0 1.0
0.0 1.0 99 1 0 0 0 1.0
1.6 91 6 2 1 0 1.1
average 96 3 1 0 0 1.0
0.6 81 13 5 1 0 1.3
0.2 1.0 92 6 2 0 0 1.1
1.6 85 9 5 1 0 1.2
average 86 9 4 1 0 1.2
0.6 93 6 1 0 0 1.1
04 1.0 89 8 2 1 0 1.1
1.6 82 12 5 1 0 1.3
average 88 9 2 1 0 1.2
0.6 93 ) 2 0 0 1.1
0.6 1.0 94 G 0 1 0 1.1
1.6 97 3 0 0 0 1.0
average 95 4 1 0 0 1.1
0.6 93 6 1 0 0 1.1
0.8 1.0 93 6 1 0 0 11
1.6 95 5 0 0 0 1.1
average 94 6 0 0 0 1.1
average 92 6 2 0 0 11
w
{:g ——0
——30% 60 —i—o:2
) —B—50%] 08 so —a—04
—h—30% " —>—0s
20 ——0.8

0.2 0.4 0.6

tardiness faclar

0.8

i

0%

50%

due-date range (R)

Figure 8. The trend of 1st ranking using the proposed Heuristic A
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Table 5. Average effect of the number of jobs on Heuristic A compared

to the MWSTR /EST method (Unit = %)
n
o 10 20 30 40 50

T BEWDBEWDBEWBEWBEWBEW
0.0 |14 63 23|16 71 13|5 87 8|3 88 9] 5 8 722 63 15
0.2 |50 16 34|65 15 20|61 23 16|55 25 20| 47 31 22|56 23 16
04 (84 0 16|95 0 5|94 0 6{95 0 5,90 0 10{%0 0 10
06 |8 0 13|99 0 198 0 2(98 0 2|100 0 0|98 O 2
0.8 |85 0 15|97 0 3|98 0 2|98 0 2(95 0 5196 0 4
average|64 16 20|74 17 9|71 22 7|70 22 8|65 26 9|72 18 10

A triple-value (B,E,W) representation is used to demonstrate the relative
performance of Heuristic A over and against the MWSTR/EST method. Table
5 shows the average effect of the number of jobs on Heuristic A compared to
the MWSTR/EST method. The results show that the average percentage of
better cases ranges from 64% to 74% when the number of jobs ranges from 5 to
50. The average percentage of worse cases from 20% to 7% when the number of
jobs increases from 5 to 20, then ranges from 7% to 10% as the number of jobs
increases from 20 to 50. The trend of better cases on Heuristic A compared
to MWSTR/EST is shown on Figure 9, the trends reveal that the percentage
of better cases on Heuristic A compared to MWSTR/EST is up to 80% for
7 > 0.2. The fact indicates that the proposed heuristic algorithm performs
ever better for complex problems, but the number of jobs has little impact on
the performance of Heuristic A when 7 > 0.2. The fardiness factor has the
significant influence on the performance of Heuristic A.

Table 6 shows the average effect as per number of clerks on Heuristic A
compared to the MWSTR/EST method. The results show that the average
percentage of better cases increases from 60% to 78% and the percentage of
worse cases drops from 17% to 6% when the number of clerks increases from
2 to 5. The percentage of improvement on the total tardy cost for the betier
cases increases from 34% to 53% when the number of clerks increases from 2
to 5. Figure 10 shows the trend of better cases on Heuristic A compared to the
MWSTR/EST method, the trends reveal that the percentage of better cases on
Heuristic A compared to MWSTR/EST is up to 80% for = > 0.2. This occur-
rence reveals that Heuristic A performs ever better for complex problems, and
the tardiness factor also is a significant factor on the performance of Heuristic
A
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Table 6. Average effect of the number of clerks compared to the

MWSTR/EST method (Unit = %)
m
2 3 4 5

T B E W E WIB E W|B E w
0.0 4 81 1516 81 13/14 75 11720 69 11
0.2 36 30 34|50 26 24|63 21 16173 14 13
0.4 81 0 19(9 0 4|94 o 6 /98 0 2
0.6 94 0 697 0 398 o 2198 0 2
0.8 8 0 12195 0 5 (98 O 2199 ¢ 1
average |60 23 17|69 21 10|74 19 7 |78 16 6
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Figure 10. The trend of better cases on Heuristic A compared
to the MWSTR/EST method
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Table 7. Average effect of due-date range under five different

tardiness factors (Unit = %)
- R
30% 50% 80% average
T B EW|/B E W|B E wW|lB E W
0.0 9 90 1|6 8 6 |17 51 32111 76 13
0.2 80 5 6|45 41 14134 23 43 | 55 23 22
04 97 0 3|96 0 4 |8 0 19/91 0 9
0.6 96 0 4{97 0 3197 0 3197 0 3
0.8 94 0 6|95 0 5 (96 O 419 0 5
average |77 19 4

68 26 6 |65 15 20|70 20 10

Table 7 shows the average effect of the tardiness factor on Heuristic A
‘compared to the MWSTR/EST method. The results show that the percentage

of better cases increases sharply from 11% to 97% when the tardiness factor
increases from 0.0 to 0.6, with the percentage of better cases decreasing steadily
from 97% to 95% for 7= 0.6 to 0.8. The percentage of equal cases decreases
sharply from 76% to 0% when T increases from 0.0 to 0.4, with the percentage
of equal cases becoming 0 for 7= 0.4 to 0.8. The percentage of worse cases
ranges from 13% to 29% for 7= 0.0 to 0.2, with the percentage of worse cases
ranges from 3% to 9% for 7= 0.4 o 0.8. Summarizing all data, the resnlis show
that 70% of the 7200 tested cases Heuristic A is preferred, as opposed to only
10% for the MWSTR/EST method, whereas the rest are indifferent among the
7200 tested cases. The high percentage of better cases and the low percentage
of worse cases illustrate the superior performance of Heuristic A. The trend of
better cases on Heuristic A compared to the MWSTR/EST method in Figure
11 shows that the influence of the tardiness factor on the proposed method is
radical. For the problem of no job tardiness (r=0.0 ) only 11% of the test cases
are better, while 76% are the same. For the problems with 20% job tardiness,
55% of the test cases are better and 23% are the same. For the problems with
40% to 80% job tardiness, the proposed heuristic performs very well.

The trend in Figure 11 also reveals the influence of the due-date range
under five different tardiness.factors, When the tardiness factor is from 0.0
to 0.4, the performance of Heuristic A for the 30% due-date range is the best
among the 30%, 50%, and 0% due-date ranges. Yet, for 7= 0.6 to 0.8, the
differences in the better cases and the worse cases among the three ranges are
very slight. This implies that the performance of Heuristic A remains unaffected
by the range of due-dates when 7 > 0.4.

The percentages of improvement on the total tardy cost for the better
cases under these 15 combinations are shown in Table 8 and Figure 12. The
results show that the percentage of improvement decreases when the value of
tardiness factor increases. For 7= 0.0 to 0.2, the percentage of improvement on
the total tardy cost for the better cases is about 80%, with the percentage of
improvement on the total tardiness for the better cases has decreased sharply
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to the MWSTR/EST method
Table 8. The percentage of improvement compared to the
MWSTR/EST method (Unit =%)
R
T 30% 50% 80% average
0.0 100 67 69 77
0.2 95 68 63 81
0.4 60 52 62 58
0.6 38 33 44 38
0.8 23 19 26 23
average 63 48 53 54

from 81% to 23% for = 0.2 to 0.8. However, the differences of improvement on

the total tardiness among the ranges of due-dates are trivial for 7= 0.4 to 0.8.

The average percentage of improvement in the total tardy cost for the better
cases on Heuristic A compared to the MWSTR/EST method is around 54%.

On the basis of the above facts, experimental results show that the pro-

posed Heuristic A performs much better than the other four methods under

the total tardy cost criterion and it are ever better for complex problems. The

. results also reveal that the tardiness factor has significant influence on Heuristic

A, and the due-date range is minor.

5. CONCLUSIONS

The superior performance of the proposed Heuristic A in open-shop schedul-
ing when compared to the four methods may be attributed to the idle time
f rule and the structure of network. The proposed heuristic algorithm A per-
forms much better than the other four methods, and generates the best results
among 92% of the 7,200 test cases. Computational results also clearly indicate
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Figure 12. The percentage of improvement on Heuristic A compared
to the MWSTR/EST method

that Heuristic A performs much better for an open-shop having more than or
equal to 40% late jobs in its system. The complexity of Heuristic is O(n’m),
which implies that Heuristic A can generate a suboptimal solution within a
polynomial time. The proposed heuristic was coded in FORTRAN and exe-
cuted on a SUN workstation for this experimental siudy. The average running
time of a 50-job, 5-processor open-shop scheduling is around 11 seconds, and
the running time of the worst case in all test cases is around 16 seconds. The
results verify the high efficiency of the proposed Heuristic A.

Business logistics management has become more and more important to
meet the strategy of marketing to satisfy the need of customers. The criterion
of minimizing the tardy cost in the open-shop scheduling is particularly fitted in
the picking order system in the physical distribution centers. Furthermore, for
reducing the cost of inventory and perished products, the proposed Heuristics
A should be able to expand for the real applications and then be converted into
modules to embed into the decision support systems in the business logistics
management for the near future.

Order insertion is prevalent in the small & medium enterprises of Taiwan.
The property of the network model and the concept of the spanning tree will
let the open-shop model or the job-shop model easy to be modified for haadling
the order insertion to promote the efficiency and the quality of scheduling in
the future research.
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